Answers to examination-style questions

Answers

Marks

2

1

1
iv) $\left[\mathrm{H}^{+}\right]=\frac{4.02 \times 10^{-14}}{1.0 \times 10^{-3}}$
$\mathrm{pH}=10.40$
b) i) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$
$=\frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$
$\left[\mathrm{H}^{+}\right]=\sqrt{1.35 \times 10^{-5}} \times 0.125$
$\mathrm{pH}=2.89$
c) i) $\quad\left(50.0 \times 10^{-3}\right) \times 0.125$
$=6.25 \times 10^{-3} \mathrm{~mol}$
ii) $\left(6.25 \times 10^{-3}\right)-\left(1.0 \times 10^{-3}\right)$
$=5.25 \times 10^{-3} \mathrm{~mol}$
iii) mol salt formed $=1.0 \times 10^{-3}$
$\left(\mathrm{H}^{+}\right)=\mathrm{K}_{\mathrm{a}} \times \frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}$
$=\left(1.35 \times 10^{-5}\right) \times \frac{\left(\frac{5.25 \times 10^{-3}}{\mathrm{~V}}\right)}{\left(\frac{1.0 \times 10^{-3}}{\mathrm{~V}}\right)}$
$=7.088 \times 10^{-5}$
$\mathrm{pH}=4.15$

Examiner's tips

Two nice easy marks so learn these equations.

This is a deduction from part \mathbf{i}).
This was covered in chapter 1 and is needed throughout the course.

2 dp needed.

2 dp needed.

2 dp needed.

2 dp needed.

Remember [] are showing moles per dm^{3}.

The volume is this case cancels out so that is why it was not given in the question.

2 a) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\sqrt{1.35 \times 10^{-5} \times 0.169} \\
& =1.51 \times 10^{-3} \\
\mathrm{pH} & =2.82
\end{aligned}
$$

b) i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$

$$
\text { or } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}^{-}
$$

$$
\rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

ii) mol propanoic acid $=0.250-0.015 \mathbf{2}$
$=0.235 \mathrm{~mol}$
mol propanoate ions
$=0.190+0.015=0.205 \mathrm{~mol}$
iii) $\left[\mathrm{H}^{+}\right]=\frac{K_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}$

$$
\begin{aligned}
& =\frac{\left(1.35 \times 10^{-5}\right)(0.235)}{0.205} \\
& =1.548 \times 10^{-5} \\
\mathrm{pH} & =4.81
\end{aligned}
$$

3 a) i) $K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
1
ii) $2.34 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
iii) $2.34 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
iv) answers in the range of 5.48×10^{-14} to 5.50×10^{-14}
b) $\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{0.136}=7.35 \times 10^{-14}$
$\mathrm{pH}=13.13$
\square

Round brackets will be penalised. Square brackets are showing concentration.

1 mark is allowed for correct pH from candidates with wrong $\left[\mathrm{H}^{+}\right]$value.

Can show a molecular or ionic equation since the question does not specifically ask for either.
$\frac{K_{\mathrm{a}} \times[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$would be allowed.
1 mark allowed for correct pH from wrong $\left[\mathrm{H}^{+}\right]$value.

2 dp needed.
This mark is consequential on part ii).
This is consequential as well, i.e. $=$ ii) \times iii).

2 dp needed.

Answers to examination-style questions

Answers

Marks

Examiner's tips

4 a) i) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
ii) 0.437 or $0.44 \mathrm{~mol} \mathrm{dm}^{-3}$
b) i) Before A: $\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}$

Between A and B :
$\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
or $\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
ii) A: metacresol purple

2
B: bromophenol blue
iii) $\frac{40}{10^{3}} \times 0.150=6.0 \times 10^{-3} \mathrm{~mol}$

1
iv) Number of moles of HCl

$$
=12.0 \times 10^{-3} \mathrm{~mol}
$$

conc $=\frac{12.0 \times 10^{-3}}{50.0 \times 10^{-3}}$

$$
=0.24 \mathrm{~mol} \mathrm{dm}^{-3}
$$

5 a) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}$
$\left[\mathrm{H}^{+}\right]=\sqrt{\left(1.35 \times 10^{-5} \times 0.55\right)}=2.72 \times 10^{-3}$
$\mathrm{pH}=2.56$ or 2.57
2

1 Allow: $\log \frac{1}{\left[\mathrm{H}^{+}\right]}$

Need at least 2 dp .

Any spectator ions will be ignored in the equation.

Don't forget to take the square root of H^{+}.

Answers to examination-style questions

Answers

Marks

Examiner's tips

b) i) $30.0 \times 10^{-3} \times 0.55=1.65 \times 10^{-2} \mathrm{~mol}$ 1
ii) $10.0 \times 10^{-3} \times 0.23=2.30 \times 10^{-3} \mathrm{~mol} \mathrm{1}$
iii) $\left(1.65 \times 10^{-2}\right)-\left(2.30 \times 10^{-3}\right)$ 1 $=1.42 \times 10^{-2} \mathrm{~mol}$
iv) Number of moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}=2.30 \times 10^{-3} \mathrm{~mol}$ $\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}$ $=\frac{\left(1.35 \times 10^{-5}\right)\left(\frac{1.42 \times 10^{-2}}{\mathrm{~V}}\right)}{\frac{2.3 \times 10^{-3}}{\mathrm{~V}}}$

$$
=8.33 \times 10^{-5}
$$

$$
\mathrm{pH}=4.08
$$

6 a) $-\log \left[\mathrm{H}^{+}\right]=4.57 \times 10^{-3}$
b) i) $\quad K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{X}^{-}\right]}{[\mathrm{HX}]}$
ii) $\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HX}]}=\frac{\left(4.57 \times 10^{-3}\right)^{2}}{[0.150]}$

$$
=1.39 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}
$$

iii) $\mathrm{p} K_{\mathrm{a}}=3.86$
c) i) $\frac{30}{1000} \times 0.480=0.0144 \mathrm{~mol}$
ii) $\frac{18}{1000} \times 0.350=0.0063 \mathrm{~mol}$

Will accept 0.017 mol .

Will accept 0.0023 mol .

2 dp needed.
4.6×10^{-3} is allowed. Units are ignored.

A range of between 1.39×10^{-4} and 1.41×10^{-4} is allowed.

2 dp needed.

Will accept 1.44×10^{-2}

Will accept 6.3×10^{-3}

Answers

iii) $0.0144-2(0.0063)$
$=1.80 \times 10^{-3} \mathrm{~mol}$

Marks

1

1
$=0.0375 \mathrm{~mol} \mathrm{dm}^{-3}$
v) $\frac{10^{-14}}{0.0375}\left(\frac{10^{-14}}{0.038}\right)$
$=2.66 \times 10^{-13}$
$\mathrm{pH}=12.57$
iv) $1.80 \times 10^{-3} \times \frac{1000}{48}$

2

Examiner's tips

This answer is consequential and is from candidates' answer i) - ii).
If $\times 2$ missed, this is a chemical error so lose a mark.

Allow this mark consequentially if arithmetic error in previous questions.

