

Answers			Marks	Examiner's tips
1 a)	i)	$K_{w} = [H^{+}][OH^{-}]$ $pH = -\log [H^{+}]$	2	Two nice easy marks so learn these equations.
	ii)	$[H^+] = [OH^-]$	1	This is a deduction from part i).
	iii)	$(2.0 \times 10^{-3}) \times 0.5 = 1.0 \times 10^{-3} \text{ m}$	nol 1	This was covered in chapter 1 and is needed throughout the course.
	iv)	$[H^{+}] = \frac{4.02 \times 10^{-14}}{1.0 \times 10^{-3}}$ $pH = 10.40$	2	2 dp needed.
b)	i)	$K_{\rm a} = \frac{[{\rm H}^+][{\rm CH_3CH_2COO}^-]}{[{\rm CH_3CH_2COOH}]}$	4	2 dp needed.
		$=\frac{[H^+]}{[CH_3CH_2COOH]}$		
		$[H^+] = \sqrt{1.35 \times 10^{-5}} \times 0.125$		
		pH = 2.89		
c)	i)	$(50.0 \times 10^{-3}) \times 0.125$ = 6.25×10^{-3} mol	1	2 dp needed.
	ii)	$(6.25 \times 10^{-3}) - (1.0 \times 10^{-3})$ = 5.25×10^{-3} mol	1	2 dp needed.
	iii)	mol salt formed = 1.0×10^{-3}	4	Remember [] are showing moles per dm ³ .
		$(H^+) = K_a \times \frac{[CH_3CH_2COOH]}{[CH_3CH_2COO^-]}$		per um i
		$= (1.35 \times 10^{-5}) \times \frac{\left(\frac{5.25 \times 10^{-3}}{V}\right)}{\left(\frac{1.0 \times 10^{-3}}{V}\right)}$		The volume is this case cancels out so that is why it was not given in the question.
		$= 7.088 \times 10^{-5}$ pH = 4.15		

Answers M			Marks	Examiner's tips
2 a)	K_{ϵ}	$a = \frac{[H^+]^2}{[CH_3CH_2COOH]}$	3	Round brackets will be penalised. Squar brackets are showing concentration.
		$= \sqrt{1.35 \times 10^{-5} \times 0.169}$ $= 1.51 \times 10^{-3}$ Here 2.22		1 mark is allowed for correct pH from candidates with wrong [H ⁺] value.
	рH	I = 2.82		
b)	i)	$CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COONa + H_2O$	1	Can show a molecular or ionic equation since the question does not specifically ask for either.
		or $CH_3CH_2COOH + OH^-$ $\rightarrow CH_3CH_2COO^- + H_2O$		
	ii)	mol propanoic acid = $0.250 - 0.0$ = 0.235 mol	15 2	
		mol propanoate ions $= 0.190 + 0.015 = 0.205 \text{ mol}$		
	iii)	$[H^{+}] = \frac{K_a \times [CH_3CH_2COOH]}{[CH_3CH_2COO^{-}]}$	3	$\frac{K_{a} \times [HA]}{[A^{T}]}$ would be allowed.
		$=\frac{(1.35\times10^{-5})(0.235)}{0.205}$		1 mark allowed for correct pH from wrong [H ⁺] value.
		$= 1.548 \times 10^{-5}$ pH = 4.81		
3 a)	i)	$K_{\mathrm{w}} = [\mathrm{H}^{+}][\mathrm{OH}^{-}]$	1	
	ii)	$2.34 \times 10^{-7} \text{mol dm}^{-3}$	1	2 dp needed.
	iii)	$2.34 \times 10^{-7} \text{ mol dm}^{-3}$	1	This mark is consequential on part ii).
	iv)	answers in the range of 5.48×10^{-14} to 5.50×10^{-14}	1	This is consequential as well, i.e. $= ii) \times iii$).
b)	$[H^{+}]$	$] = \frac{10^{-14}}{0.136} = 7.35 \times 10^{-14}$	2	2 dp needed.
	pН	= 13.13		

Answers to examination-style questions

Answers				Marks	Examiner's tips
4 a	a)	i)	$pH = -\log[H^+]$	1	Allow: $\log \frac{1}{[H^+]}$
		ii)	$0.437 \text{ or } 0.44 \text{ mol dm}^{-3}$	1	Need at least 2 dp.
ŀ	D)	i)	Before A: $CO_3^{2-} + H^+ \rightarrow HCO_3^{-}$ Between A and B: $HCO_3^{-} + H^+ \rightarrow H_2O + CO_2$ or $HCO_3^{-} + H^+ \rightarrow H_2CO_3$	2	Any spectator ions will be ignored in the equation.
		ii)	A: metacresol purple B: bromophenol blue	2	
		iii)	$\frac{40}{10^3} \times 0.150 = 6.0 \times 10^{-3} \text{mol}$	1	
		i v)	Number of moles of HCl = 12.0×10^{-3} mol	2	
			$conc = \frac{12.0 \times 10^{-3}}{50.0 \times 10^{-3}}$		
			$= 0.24 \text{ mol dm}^{-3}$		
5 a	a)	<i>K</i> _a =	$=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{COOH}\right]}$	3	Don't forget to take the square root of \mathbf{H}^{+} .
				2	

$$[H^+] = \sqrt{(1.35 \times 10^{-5} \times 0.55)} = 2.72 \times 10^{-3}$$

$$pH = 2.56 \text{ or } 2.57$$

6

Answ	ers/		Marks	Examiner's tips
b)	i)	$30.0 \times 10^{-3} \times 0.55 = 1.65 \times 10^{-2}$	mol	Will accept 0.017 mol.
	ii)	$10.0 \times 10^{-3} \times 0.23 = 2.30 \times 10^{-3}$	1 mol 1	Will accept 0.0023 mol.
	iii)	$(1.65 \times 10^{-2}) - (2.30 \times 10^{-3})$ = 1.42×10^{-2} mol	1	
	iv)	Number of moles of $CH_3CH_2COONa = 2.30 \times 10^{-3} \text{ m}$	3 ol	2 dp needed.
		$[H^{+}] = \frac{K_a \times [CH_3CH_2COOH]}{[CH_3CH_2COO^{-}]}$		
		$= \frac{\left(1.35 \times 10^{-5}\right) \left(\frac{1.42 \times 10^{-2}}{V}\right)}{\frac{2.3 \times 10^{-3}}{V}}$		
		$= 8.33 \times 10^{-5}$		
		pH = 4.08		
a)	–log	$g[H^+] = 4.57 \times 10^{-3}$	2	4.6×10^{-3} is allowed. Units are ignored.
b)	i)	$K_{\mathrm{a}} = \frac{[\mathrm{H}^+][\mathrm{X}^-]}{[\mathrm{H}\mathrm{X}]}$	1	
	ii)	$\frac{[H^+]^2}{[HX]} = \frac{(4.57 \times 10^{-3})^2}{[0.150]}$	3	A range of between 1.39×10^{-4} and 1.41×10^{-4} is allowed.
		$= 1.39 \times 10^{-4} \text{ mol dm}^{-3}$		
	iii)	$pK_a = 3.86$	1	2 dp needed.
c)	i)	$\frac{30}{1000} \times 0.480 = 0.0144 \text{ mol}$	1	Will accept 1.44×10^{-2}
	ii)	$\frac{18}{1000} \times 0.350 = 0.0063 \text{ mol}$	1	Will accept 6.3×10^{-3}

Answers	Marks	Examiner's tips
iii) $0.0144 - 2(0.0063)$ = 1.80×10^{-3} mol	1	This answer is consequential and is from candidates' answer \mathbf{i}) – \mathbf{ii}). If \times 2 missed, this is a chemical error so lose a mark.
iv) $1.80 \times 10^{-3} \times \frac{1000}{48}$ = $0.0375 \text{ mol dm}^{-3}$	1	0.038 also allowed here since 3 significant figs.
$\mathbf{v}) \frac{10^{-14}}{0.0375} \left(\frac{10^{-14}}{0.038} \right)$ $= 2.66 \times 10^{-13}$	2	Allow this mark consequentially if arithmetic error in previous questions.
pH = 12.57		