Answers

Marks Examiner's tips

1 (a) (i) $75.0 \times 10^{-3} \times 0.500=0.0375(\mathrm{~mol})$
1
(ii) $21.6 \times 10^{-3} \times 0.500=0.0108(\mathrm{~mol})$
(iii) $0.0375-0.0108=0.0267(\mathrm{~mol})$
(iv) moles of $\mathrm{MgCO}_{3}=0.0267 / 2=0.01335(\mathrm{~mol})$

$$
\begin{aligned}
\text { mass of } \mathrm{MgCO}_{3} & =0.01335 \times 84.3 \\
& =1.125 \mathrm{~g} \\
\text { percentage } \mathrm{MgCO}_{3} & =1.125 / 1.25 \times 100 \\
& =90 \%
\end{aligned}
$$

(b) (i) $\%$ oxygen $=38.0$

$$
\begin{array}{rlrl}
\mathrm{Na} & =36.5 / 23 & \mathrm{~S}=25.5 / 32.1 & \mathrm{O}=38.0 / 16 \\
& =1.587 & =0.794 & =2.375 \\
& =2: 1: 3 & &
\end{array}
$$

(ii) $\mathrm{Na}_{2} \mathrm{SO}_{3}+2 \mathrm{HCl}-2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}$

2 (a) (i) $100 \times 10^{-3} \times 0.500=5.00 \times 10^{-2}(\mathrm{~mol})$
(ii) $27.3 \times 10^{-3} \times 0.600=1.64 \times 10^{-2}$ or $1.638 \times 10^{-2}(\mathrm{~mol})$ only
(iii) $1.64 \times 10^{-2}(\mathrm{~mol})$
(iv) $5.00 \times 10^{-2}-1.64 \times 10^{-2}=3.36 \times 10^{-2}(\mathrm{~mol})$
(v) $3.36 \times 10^{-2} \times 1 / 2=1.68 \times 10^{-2}(\mathrm{~mol})$
$1.68 \times 10^{-2} \times 132.1$ or $1.39 \times 10^{-2} \times 132.1$
$=2.22 \mathrm{~g}$ or 1.83 g
(b) $p V=n R T$

$$
\begin{aligned}
& n=\frac{0.143}{17}=8.41 \times 10^{-3}(\mathrm{~mol}) \\
& \begin{aligned}
T=\frac{p V}{n R} & =\frac{100000 \times 2.86 \times 10^{-4}}{8.31 \times 8.4 \times 10^{-3}} \\
& =408.5-410.5(\mathrm{~K})
\end{aligned}
\end{aligned}
$$

0.0133 to 0.0134 would be allowed.

Keep going through the calculation.
You can score consequential marks even if you have made an arithmetic error.

If no $\%$ of oxygen, maximum 1 mark.

You can also have multiples when balancing your equation.
accept $5 \times 10^{-2} / 0.05$
if 2.78×10^{-2} used 1.39×10^{-2}

If you get the moles wrong you will get consequential marks if you use your mole value correctly.

Answers to examination-style questions

Answers

3 (a) moles $\mathrm{HNO}_{3}=175 \times 10^{-3} \times 1.5=0.2625 \mathrm{~mol}$ moles $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=1 / 2 \times 0.2625=0.131 \mathrm{~mol}$
$M_{\mathrm{r}} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=331.2$
mass $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=331.2 \times 0.131=43.3 \mathrm{~g}$
(b) (i) $p V=n R T$
$n=\frac{p V}{R T}=\frac{100000 \times 1.5 \times 10^{-4}}{8.31 \times 500}$

$$
=3.61 \times 10^{-3}
$$

(ii) moles $\mathrm{NO}_{2}=4 / 5 \times 3.61 \times 10^{-3}$

$$
=2.89 \times 10^{-3} \text { or } 1.78 \times 10^{-3}
$$

$M_{\mathrm{r}} \mathrm{NO}_{2}=46$
mass $\mathrm{NO}_{2}=46 \times 2.89 \times 10^{-3}=0.1 .33(\mathrm{~g})$ or 0.0821 (g)

4 (a) (i) Avogadro's number of molecules /
particles / species / 6×10^{23}
or same number of atoms as in $12 .(00) \mathrm{g}$ of ${ }^{12} \mathrm{C}$
(ii) moles $\mathrm{O}_{2}=\frac{0.350}{32}\left(=1.09 \times 10^{-2} \mathrm{~mol}\right)$

$$
\begin{aligned}
& =29\left(\times 1.09 \times 10^{-2}\right) \\
& =0.316-0.317 \mathrm{~mol}
\end{aligned}
$$

(iii) moles of nitroglycerine $=4 \times 1.09 \times 10^{-2}$ ($=0.0438 \mathrm{~mol})$
M_{r} of nitroglycerine $=227$
moles of nitroglycerine $=227 \times 0.0438$
$=9.94-9.95$
(b) $p V=n R T$
$p=\frac{n R T}{V}=\frac{0.873 \times 8031 \times 1100}{1.00 \times 10^{-3}}$

$$
=7980093 \text { or } 7980 \text { or } 7.98
$$

units $=\mathrm{Pa}$ or kPa or MPa (as appropriate)

1
1

Marks Examiner's tips

 equation, i.e. 2:1Don't forget p in Pa, V in m^{3} and T in K .

Ratio of gas molecules: there are 4 NO_{2} and $1 \mathrm{O}_{2}$, so the fraction of NO_{2} in the mixture of gases is $4 / 5$.

Give answer to 3 significant figures.

Give answer to 3 significant figures.

Chapter 2

Answers to examination-style questions

Answers

Marks Examiner's tips

5 (a) (i) moles $\mathrm{KNO}_{3}=1.00 / 101.1=9.89 \times 10^{-3}$ (mol)
(ii) $p V=n R T$ or $n=p V / R T$
moles $\mathrm{O}_{2}=n=\frac{p V}{R T}$
1
$=\frac{100000 \times 1.22 \times 10^{-4}}{8.31 \times 298} \quad \mathbf{1}$ $=4.93 \times 10^{-3}(\mathrm{~mol}) \quad \mathbf{1}$
(b) (i) simplest ratio of atoms of each element in a compound
(ii) $\mathrm{K} \quad \mathrm{N} \quad \mathrm{O}$
$\frac{45.9}{39.1} \quad \frac{16.5}{14} \quad \frac{37.6}{16}$
$\begin{array}{cccc}1.17 & 1.18 & 2.35 & \\ 1 & 1 & 2 & \mathrm{KNO}_{2}\end{array}$
(c) $2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+\mathrm{O}_{2}$
1 You can put multiples of an equation.

1 You must learn this definition exactly.

