

Answers to examination-style questions

An	ISV	ver	S	Marks	Examiner's tips	
1 ((a)	(i)	$75.0 \times 10^{-3} \times 0.500 = 0.0375 $ (mol)	1		
		(ii)	$21.6 \times 10^{-3} \times 0.500 = 0.0108 $ (mol)	1		
		(iii)	0.0375 - 0.0108 = 0.0267 (mol)	1		
		(iv)	moles of $MgCO_3 = 0.0267/2 = 0.01335$ (mol)	1	0.0133 to 0.0134 would be allowed.	
			mass of $MgCO_3 = 0.01335 \times 84.3$ = 1.125 g	1 1		
			percentage $MgCO_3 = 1.125/1.25 \times 100$ = 90%	1	Keep going through the calculation. You can score consequential marks even if you have made an arithmetic error.	
((b)	(i)	% oxygen = 38.0 Na = 36.5/23 S = 25.5/32.1 O = 38.0/16	1	If no % of oxygen, maximum 1 mark.	
			= 1.587 = 0.794 = 2.375 $= 2:1:3$	1		
		(ii)	$Na_2SO_3 + 2HCl - 2NaCl + H_2O + SO_2$	1	You can also have multiples when balancing your equation.	
2 ((b)	(i)	$100 \times 10^{-3} \times 0.500 = 5.00 \times 10^{-2} $ (mol)	1	accept $5 \times 10^{-2} / 0.05$	
		(ii)	$27.3 \times 10^{-3} \times 0.600 = 1.64 \times 10^{-2} \text{ or}$ $1.638 \times 10^{-2} \text{ (mol) } \underline{\text{only}}$	1		
		(iii)	$1.64 \times 10^{-2} \text{ (mol)}$	1		
		(iv)	$5.00 \times 10^{-2} - 1.64 \times 10^{-2} = 3.36 \times 10^{-2} $ (mol)	1		
		(v)	$3.36 \times 10^{-2} \times \frac{1}{2} = 1.68 \times 10^{-2} \text{ (mol)}$	1	if 2.78×10^{-2} used 1.39×10^{-2}	
			$1.68 \times 10^{-2} \times 132.1 \ or \ 1.39 \times 10^{-2} \times 132.1$	1		
			= 2.22 g <i>or</i> 1.83 g	1		
(pV	= nRT	1	If you get the moles wrong you will	
		<i>n</i> =	$\frac{0.143}{17} = 8.41 \times 10^{-3} \text{ (mol)}$	1	get consequential marks if you use your mole value correctly.	
			$\frac{pV}{nR} = \frac{100\ 000 \times 2.86 \times 10^{-4}}{8.31 \times 8.4 \times 10^{-3}}$	1		
			= 408.5 - 410.5 (K)	1		

Answers to examination-style questions

Ans	wers	Marks	Examiner's tips	
3 (a)	moles $HNO_3 = 175 \times 10^{-3} \times 1.5 = 0.2625$ mol	1		
	moles $Pb(NO_3)_2 = \frac{1}{2} \times 0.2625 = 0.131 \text{mol}$	1	You must use the ratio from the	
	$M_{\rm r} \text{Pb(NO}_3)_2 = 331.2$	1	equation, i.e. 2:1	
	mass $Pb(NO_3)_2 = 331.2 \times 0.131 = 43.3 g$	1		
(b)	(i) $pV = nRT$	1	Don't forget p in Pa, V in m^3 and T in K .	
	$n = \frac{pV}{RT} = \frac{100\ 000 \times 1.5 \times 10^{-4}}{8.31 \times 500}$	1		
	= 3.61×10^{-3} (ii) moles NO ₂ = $4/5 \times 3.61 \times 10^{-3}$	1 1	Ratio of gas molecules: there are 4	
	$= 2.89 \times 10^{-3} \ or \ 1.78 \times 10^{-3}$	1	NO_2 and 1 O_2 , so the fraction of NO_2 in the mixture of gases is 4/5.	
	$M_{\rm r}{\rm NO}_2=46$	1		
	mass $NO_2 = 46 \times 2.89 \times 10^{-3} = 0.1.33$ (g) or 0.0821 (g)	1		
4 (a)	(i) Avogadro's number of molecules / particles / species / 6×10^{23}	1		
	or same number of atoms as in 12.(00) g of $^{12}\mathrm{C}$	1		
	(ii) moles $O_2 = \frac{0.350}{32}$ (= 1.09 × 10 ⁻² mol)	1	Give answer to 3 significant figures.	
	$= 29 (\times 1.09 \times 10^{-2})$	1		
	= 0.316 - 0.317 mol	1		
	(iii) moles of nitroglycerine = $4 \times 1.09 \times 10^{-2}$ (= 0.0438 mol)	1	Give answer to 3 significant figures.	
	$M_{\rm r}$ of nitroglycerine = 227	1		
	moles of nitroglycerine = 227×0.0438 = $9.94-9.95$	1		
(b)	pV = nRT	1		
	$p = \frac{nRT}{V} = \frac{0.873 \times 8031 \times 1100}{1.00 \times 10^{-3}}$	1		
	= 7980093 or 7980 or 7.98	1		
	units = Pa or kPa or MPa (as appropriate)	1		

Answers to examination-style questions

A	nsv	ver	S				Marks	Examiner's tips	
5	(a)	(i)	moles $KNO_3 = 1.00/101.1 = 9.89 \times 10^{-3}$ (mol)				1		
		(ii)	pV = nR	T or n = p	oV/RT		1		
		$moles O_2 = n = \frac{pV}{RT}$				1			
						$\frac{1.22 \times 10^{-4}}{\times 298}$	1		
				= 4.9	93×10^{-3}	(mol)	1		
	(b)	(i)	simplest ratio of atoms of each element in a compound			each element	1	You must learn this definition exactly.	
		(ii)	K	N	O			If % of O is missing then you can only get one mark.	
			$\frac{45.9}{39.1}$	$\frac{16.5}{14}$	$\frac{37.6}{16}$			get one mark.	
			1.17 1	1.18 1	2.35	KNO ₂	3		
(c) $2KNO_3 \rightarrow 2KNO_2 + O_2$							1	You can put multiples of an equation.	