AQA Chemistry

Answers to examination-style questions

Answers		Marks	Examiner's tips
1	conc HNO ₃ conc H ₂ SO ₄	2	If both 'conc' missing you can score one for both acids.
	$\begin{split} HNO_3 + 2H_2SO_4 &\rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-\\ or \ HNO_3 + H_2SO_4 &\rightarrow NO_2^+ + H_2O + HSO_4^-\\ or \ HNO_3 + H^+ &\rightarrow NO_2^+ + H_2O \end{split}$	1	This can also be done in two equations.
	$\bigcirc + HNO_3 \longrightarrow \bigcirc + H_2O$	2	Benzene can also be written as C_6H_6 and nitrobenzene as $C_6H_5NO_2$.
	Electrophilic substitution	1	
	⁺ NO ₂ ⁺ ^{M2} structure	3	One mark is for the arrow from within hexagon to N or to the + on N (M1). The 'horseshoe' must not extend beyond C2 to C6. (M2) Mark 3 is for the arrow into the hexagon (M3).
2	$CH_3COCl + AlCl_3 \rightarrow CH_3^+CO + AlCl_4^-$	2	One mark is for the correct reactive species and 1 for the equation.
	Electrophilic substitution	1	This cannot be F/C acylation.
	$ \bigcirc \overset{M1}{\leftarrow} \overset{H}{\leftarrow} - CH_3 \longrightarrow \overset{M3}{\leftarrow} \overset{H}{\leftarrow} COCH_3 \\ M2 $	3	Horseshoe must not extend beyond C2 to C6. The + must be on the C of RC^+O .
3	$CH_3COCl + AlCl_3 \rightarrow CH_3^+CO + AlCl_4^-$	2	There is no mark for the acylium ion here. The mark is for the aluminium chloride and the second mark is for the balanced equation. You could have $FeCl_3$. The position of + on electrophile can be on O or C.
	$ \bigcirc \overset{M1}{\overset{+}{\overset{+}{\underset{0}{}{}{}{}{}{}{$	3	The M1 arrow from within hexagon to C or to + on C. The + must be on C of RCO.

1

Electrophilic substitution

This is not F/C acylation.

AZ AQA Chemistry

Answers to examination-style questions

Answers	Marks	Examiner's tips
4 a) CH ₃ CO ⁺	1	
b)	3	Horseshoe must not extend beyond C2 to C6. The + must be on the C of RC^+O .
$\bigcup_{\substack{\parallel\\ 0}} C - CH_3 \longrightarrow \bigcup_{M2} CC$	OCH ₃	
5 $[CH_3CH_2CO]^+$	1	You can gain the electrophile mark from the equation if not stated separately. Therefore the correct balanced equation is worth 2 marks.
$CH_{3}CH_{2}COCl + AlCl_{3} \rightarrow$ $[CH_{3}CH_{2}CO]^{+} + AlCl_{4} -$	1	In the equation, the position of the + can be on O or C or outside square brackets, however you do not need to show the square brackets.
M3 arrow H	• 3 CH ₃	The arrow for M1 must be to C or to the + on C. The horseshoe should extend from C2 to C6 only.
6 Cyclohexane evolves 120 kJ mol ⁻¹ Therefore expect triene to evolve 360 kJ mol^{-1} ; or $3 \times 120 = 360 \text{ kJ mol}^{-1}$ 360 - 208 = 152 kJ; Benzene lower in energy / more stable; d	4 lue	Cannot estimate 150 kJ, you must use the values in the question. Therefore 152 kJ can score first 2 marks in this part. Any mention of 'bond breaking needing energy' will not score marks.

to delocalisation;