Answers		Marks	Examiner's tips
1	$\begin{aligned} & \text { conc } \mathrm{HNO}_{3} \\ & \text { conc } \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$	2	If both 'conc' missing you can score one for both acids.
	$\begin{aligned} & \mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-} \\ & \text {or } \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{4}^{-} \\ & \text {or } \mathrm{HNO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	1	This can also be done in two equations.
		2	Benzene can also be written as $\mathrm{C}_{6} \mathrm{H}_{6}$ and nitrobenzene as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$.
Electrophilic substitution		1	
		3	One mark is for the arrow from within hexagon to N or to the + on N (M1). The 'horseshoe' must not extend beyond C2 to C6. (M2) Mark 3 is for the arrow into the hexagon (M3).
2	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3}{ }^{+} \mathrm{CO}+\mathrm{AlCl}_{4}{ }^{-}$	2	One mark is for the correct reactive species and 1 for the equation.
	Electrophilic substitution	1	This cannot be F/C acylation.
		3	Horseshoe must not extend beyond C2 to C6. The + must be on the C of $\mathrm{RC}^{+} \mathrm{O}$.
3	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3}^{+} \mathrm{CO}+\mathrm{AlCl}_{4}{ }^{-}$	2	There is no mark for the acylium ion here. The mark is for the aluminium chloride and the second mark is for the balanced equation. You could have FeCl_{3}. The position of + on electrophile can be on O or C .
		3	The M1 arrow from within hexagon to C or to + on C . The + must be on C of RCO.
	Electrophilic substitution	1	This is not F/C acylation.

	Answers	Marks	Examiner's tips
	a) $\mathrm{CH}_{3} \mathrm{CO}^{+}$	1	
	b)	3	Horseshoe must not extend beyond C2 to C6. The + must be on the C of $\mathrm{RC}^{+} \mathrm{O}$.
5	$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right]^{+}$	1	You can gain the electrophile mark from the equation if not stated separately. Therefore the correct balanced equation is worth 2 marks.
	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \\ & {\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right]^{+}+\mathrm{AlCl}_{4^{-}}} \end{aligned}$	1	In the equation, the position of the + can be on O or C or outside square brackets, however you do not need to show the square brackets.
		3	The arrow for M1 must be to C or to the + on C. The horseshoe should extend from C2 to C6 only.
6	Cyclohexane evolves $120 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Therefore expect triene to evolve $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$; $\begin{aligned} & \text { or } 3 \times 120=360 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & 360-208=152 \mathrm{~kJ} ; \end{aligned}$ Benzene lower in energy / more stable; due to delocalisation;	4	Cannot estimate 150 kJ , you must use the values in the question. Therefore 152 kJ can score first 2 marks in this part. Any mention of 'bond breaking needing energy' will not score marks.

