Answers

1 (a) atoms with the same number of protons and different number of neutrons
(b) ${ }_{17}^{37} \mathrm{Cl}$
(c) (i) $2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{2}$
(ii) $A_{\mathrm{r}}=\frac{(70 \times 24.4)+(72 \times 32.4)+(74 \times 43.2)}{100}$ $=72.4$
(iii) magnetic field / electric field correct link between deflection and m / z correct link between deflection and field

2 (a) $A_{\mathrm{r}}=(64 \times 0.389)+(66 \times 0.278)+(67 \times 0.147)$ $+(68 \times 0.186)$
$=65.7$
zinc / Zn
(b) electron gun fires high-energy electrons knocks off e^{-}from Q
reasons:
to allow ions to be:

- accelerated by an electric field
- deflected by a magnet / magnetic field
- detected by current formed at the detector

3 (a) relative charge $=-1$
relative mass $\leq 1 / 1800 /$ zero / negligible
(b) (i) protons $=24$
(ii) neutrons $=28$
(iii) abundance or peak height or intensity
(c) (i) reason 1: to allow particles to be accelerated / deflected reason 2: generate a current in the detector
(ii) magnetic field or electric field or electromagnet
(iii) deflection depends on mass or m / z

Marks Examiner's tips

2 There have been a few questions like this over the years. It's just getting your head around the numbers - then it's just a bit of arithmetic.
1 You really need to know the order of filling up the sub-levels.

1 Learn this topic well.
1
1

2 \% told so divide the abundance by 100

1
Keep going even if you think you are not getting the maths right. You may pick up method marks on the way. Blank spaces can't score at all!

1 Mass spectrometer - learn well.

2 Don't forget the minus sign for the charge on the electron.

The number of neutrons is the mass number - atomic number.

The work on mass spectrometer needs to be well understood.

Answers to examination-style questions

Answers

Marks Examiner's tips

4 (a) (i) atoms with the same number of protons and with different numbers of neutrons
(ii) isotopes have the same electron configuration
(b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(c) outer e^{-}in (3)d sub-level
(d) ${ }_{7}^{15} \mathrm{~N}$

5 (a) enthalpy change when 1 mole of electrons is removed / knocked out from 1 mole of gaseous atoms (of the same element)
(b) $\mathrm{Mg}^{+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{e}^{-}$
(c) increased nuclear charge
smaller atom or electrons enter the same level or similar shielding
(d) electron removed from a level of lower energy or e^{-}removed from $2 p$ rather than from 3s
less shielding
6 (a) (i) atoms with the same number of protons / same atomic number but different number of neutrons / different mass number
(ii) detected by: positive ions collide with / are deflected to / are collected at the detector
causing current to flow / detected electrically
abundance measured:idea that current depends on number of ions hitting detector

Always learn definitions. Then they are 'easy' marks.

3

1 This asks for all sub-levels, so don't use the abbreviated form using [Ne].

1

2 There have been a few questions like this over the years. It's just getting your head around the numbers, then it's just a bit of arithmetic.

2 When you have done the equation, check that the charges balance as well.

1 Don't forget that the number of protons /
1 nuclear charge increases from left to right of the periodic table. Also across each period the electrons enter the same level, i.e. in Period 3 the last electrons go into the 3rd level etc.

1 Electrons are lost from the highest energy level (which contains the electrons) first.

1

1 Don't say the same number of electrons.

1

1 Learn this.

Answers to examination-style questions

Answers

(b) $\frac{(54 \times 5.8)+(56 \times 91.6)+(57 \times 2.6)}{100}$ $=55.9$
(c) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}$
(ii) highest occupied energy level in 3d
(iii) no difference same e^{-}arrangement

Marks Examiner's tips

2% told so divide the abundance by 100 .

1 You really need to know the order of filling up the sub-levels.

1

2

