AS AQA Chemistry

Answers to examination-style questions

Answers				Marks	Examiner's tips
1	(a) (b)	(i) e v v (i) ½ (ii) Δ f f =	enthalpy to break a covalent bond varies between compounds so average value used ${}^{2}N_{2} + 1{}^{1}{}^{2}H_{2} \rightarrow NH_{3}$ $MH = \sum(bonds broken) - \sum(bonds broken) = {}^{1}{}^{2} \times 944 + 1{}^{1}{}^{2} \times 436 - 3 \times 388$ = -38 kJ mol ⁻¹	1 1 1 1 1 1	You could say dissociation energy. If you find these difficult, then
	(c)	4(C-I (C-C (C=C 2(C-I (C-H	H) + (C=C) + (H-H) - (6(C-H) +)) = -136) + (H-H) - ((C-C) + 2(C-H)) = -136 H) = 836) = 418 (kJ mol ⁻¹)	1 1 1	always write down the general expression given above because it's worth a mark.
2	(a)	Δ <i>H</i> = =	\sum (bonds broken) - \sum (bonds formed) +146 - 496/2 (<i>or</i> 2 × 463 + 146 - (2 × 463 + 496/2)) -102 (kJ mol ⁻¹)	1 1 1	
	(b) (c)	C(s) - equat correc (i) n	+ $2H_2(g) \rightarrow CH_4(g)$ ion ct state symbols nacromolecular, lots of energy needed	1 1	Can also accept giant molecule.
		ta (ii) ∆ (ii) = =	o break covalent bonds $\Delta H = \sum \Delta H_{\rm f} (\text{products}) - \sum \Delta H_{\rm f}$ reactants) (or correct cycle) = 715 + 4 × 218 - (-74.9) = 1662 (kJ mol ⁻¹)	1 1 1	
		(iii) 1	662/4 = 415.5	1	This mark is for realising that there are 4 bonds. Even if your answer is not correct you must carry on and divide by 4.
3	(a) (b)	enthat is formall subset $\Delta H =$	lpy change when 1 mol of compound med from its elements bstances in their standard states $\sum \Delta H^{\Theta}_{c}$ (reactants) $- \sum \Delta H^{\Theta}_{c}$ (products)	1 1 1 1	
		=	$(7 \times -394) + (4 \times -286) - (-3909)$ +7 kJ mol ⁻¹	1	If you find these hard then always write the first line since it's worth a mark.
	(c)	heat c = 250	change = $mc\Delta T$ 0 × 4.18 × 60 = 62 700 J = 62.7 kJ	1 1	Learn the heat change equation, $\Delta H = mc\Delta T$
	(d)	moles $\Delta H =$ mass temp.	s $C_7H_8 = 2.5 / 92 = 0.0272$ 62.7 / 0.0272 = -2305 kJ mol ⁻¹ of water heated = 25 + 50 = 75 g rise = 26.5 - 18 = 8.5 °C	1 1 1	You need both here for 1 mark.

AS AQA Chemistry

Answers to examination-style questions

Ans	swers	Marks	Examiner's tips Don't forget that this is exothermic so put in the minus sign.
((heat change = $75 \times 4.18 \times 8.5 = 2665 \text{ J}$ = 2.665 kJ moles HCl = 0.05 $\Delta H = -2.665 / 0.05 = -53.3 \text{ kJ mol}^{-1}$ e) less heat loss	1 1 1	
4 (;	 a) enthalpy change / heat energy change when 1 mol of a substance is completely burned in oxygen at 298 K and 100 kPa or standard conditions b) ΔH = ∑(bonds broken) - ∑(bonds formed) = (6 × 412) + 612 + 348 + (4.5 × 496) - 	1 1 5 1	This definition is definitely worth learning. It is worth 3 marks.
	$[(6 \times 743) + (6 \times 463)]$ = -1572 kJ mol ⁻¹	1	Always write down the general expression for bond energy calculations as shown here in the first line.
() ()	c) by definition $\Delta H_{\rm f}$ is formation from an element d) $\Delta H_{\rm c} = \sum \Delta H_{\rm f}(\text{products}) - \sum \Delta H_{\rm f}(\text{reactants or cycle})$ = $(3 \times -394) + (3 \times -242) - (+20)$ = $-1928 \text{ kJ mol}^{-1}$	1 1 1 1	Always write the first line as shown here for enthalpy calculations.
(e) bond enthalpies are mean / average values from a range of compounds	1 1	

Nelson Thornes is responsible for the solution(s) given and they may not constitute the only possible solution(s).