Answers

1 a) $K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}{\left[\mathrm{CH}_{4}\right]^{2}}$
b) $K_{\mathrm{c}}=\frac{\left(\frac{0.28}{0.25}\right)^{3}\left(\frac{0.12}{0.25}\right)}{\left(\frac{0.44}{0.25}\right)^{2}}$
$=\frac{(1.12)^{3}(0.48)}{(1.76)^{2}}$
$=0.218 \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
c) to right / to products / forwards; increase;
d) to left / to reagent / backwards: no effect;

2 a) i) moles of $\mathrm{C}_{2} \mathrm{~F}_{4}=0.40$ moles of $\mathrm{HC1}=0.80$
ii) $\quad K_{\mathrm{c}}=\frac{\left[\mathrm{C}_{2} \mathrm{~F}_{4}\right][\mathrm{HCl}]^{2}}{\left[\mathrm{CHClF}_{2}\right]^{2}}$
iii) $K_{\mathrm{c}}=\frac{\left(\frac{0.40}{18.5}\right)\left(\frac{0.8}{18.5}\right)^{2}}{\left(\frac{0.20}{18.5}\right)^{2}}$

$$
=0.35 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Marks Examiner's tips

1 If round brackets are used, this will be penalised but examiners will continue to mark the rest of the question without further penalty.

4
One mark is given for dividing throughout by the volume.

If moles are used instead of concentration, candidates can only score a maximum of 2 marks in this part of the question.

Allow values of between $0.217-0.22$ $\mathrm{mol}^{2} \mathrm{dm}^{-6}$

Allow 1.36×10^{-2} if vol not used.

One mark is given for the correct units.
2 max.
$\mathbf{2}$ max. Only temperature affects the value of K_{c}

2 Look at the equation to get the ratio. Since 0.2 moles are left this means 0.8 have been used up to make products. The ratio of reactant to $\mathrm{C}_{2} \mathrm{~F}_{4}$ is $2: 1$ so this means 0.4 moles of $\mathrm{C}_{2} \mathrm{~F}_{4}$ are made. Since the ratio of reactant to HCl is $1: 1$ the moles of HCl is 0.8 .

1

3
An incorrect K_{c} means you can only score a mark for units.

Answers to examination-style questions

Answers

Marks Examiner's tips

b) i) increase
ii) decrease

3 a) i) moles of O_{2} at equilibrium:

$$
\frac{7.04}{32}=0.22
$$

moles of NO at equilibrium: 0.44
ii) Original number of moles of NO_{2}

$$
\frac{21.3}{46}=0.463
$$

Number of moles of NO_{2} at equilibrium: $0.463-0.44=0.023$
b) $K_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{NO}_{2}\right]}$
$K_{\mathrm{c}}=\frac{\left(\frac{0.44}{11.5}\right)^{2} \times\left(\frac{0.22}{11.5}\right)}{\left(\frac{0.023}{11.5}\right)^{2}}=7.0 \mathrm{~mol} \mathrm{dm}^{-3}$
c) $p V=n R T$
$T=\frac{p V}{n R}=\frac{\left(3.30 \times 10^{5}\right) \times\left(11.5 \times 10^{-3}\right)}{0.683 \times 8.31}$
$T=669 \mathrm{~K}$
d) the yield is increased, K_{c} stays the same

4 a) i) $\mathrm{C}+3 \mathrm{D} \rightarrow 2 \mathrm{~A}+\mathrm{B}$
ii) $\mathrm{mol} \mathrm{dm}^{-3}$
iii) forward reaction is exothermic
b) i) $\mathrm{N}_{2} \mathrm{O}_{4} M_{\mathrm{r}}=92.0$
$\mathrm{Mol}=\frac{36.8}{92.0}=0.400$
ii) $\quad \mathrm{mol} \mathrm{N}_{2} \mathrm{O}_{4}$ reacted $=0.400-0.180$

$$
=0.220
$$

mol NO 2 formed $=0.440$

Reaction is endothermic.
There are more moles on the right side of the equilibrium.
moles $=$ mass $/ M_{\mathrm{r}}$
Twice as many moles of NO as O_{2} in the equilibrium equation.

1 mark can be given for the correct process of obtaining the answer.

Full marks are given for correct answer.

Remember to divide all concentrations by the total volume.

One mark is given for the correct equation.

One mark given for the correct units.
One mark is given for the correct rearranged equation.
One mark is given just for using $V=11.5 \times 10^{-3}$
$K_{\text {c }}$ only affected by T and this stays the same.

You could also say more products formed in iii).

Answers

Marks Examiner's tips

iii) $K_{\mathrm{c}}=\frac{\left(\mathrm{NO}_{2}\right)^{2}}{\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)}$

$$
\begin{aligned}
& =\frac{\left(\frac{0.44}{16}\right)^{2}}{\left(\frac{0.18}{16}\right)} \\
& =0.067
\end{aligned}
$$

iv) The equilibrium will move to the right, K_{c} will remain the same

5 a) i) Increase
higher pressure gives lower yield; the equilibrium shifts to reduce p or equilibrium favours side with fewer moles of gas
ii) Endothermic

2

3
iv) $K_{\mathrm{c}}=\frac{(0.023)^{2}}{(0.172)^{2}}$
$=0.0179$
v) $K_{\mathrm{c}}=55.9$
b) i) Moles of iodine $=0.023$

Moles of $\mathrm{HI}=0.172$
ii) $K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$
iii) Volume cancels in K_{c} expression

Increased temperature increases
yield;
Equilibrium shifts to reduce temperature or equilibrium
favours endothermic direction
) Volune cancels in $K_{\text {c }}$ expression

1

One mark for each step in the calculation, full marks are given for the correct answer.
K_{c} only affected by T and this stays the same.

If this trend is wrong then there are no more marks for you in part i).

If this trend is wrong then there are no more marks for you in part ii).

Square brackets must be used for K_{c} since this represents concentration.

Since there are the same numbers of moles on each side of the equation.

You can get a mark here consequential on you answer to part iv). It is the reciprocal of you part iv) answer.

