A A Chemistry Answers to examination-style questions

Answers			Marks	Examiner's tips	
1	a)	$K_{\rm c} = \frac{[{\rm H}_2]^3 [{\rm C}_2 {\rm H}_2]}{[{\rm C}{\rm H}_4]^2}$	1	If round brackets are used, this will be penalised but examiners will continue to mark the rest of the question without further penalty.	
	b)	$K_{\rm c} = \frac{\left(\frac{0.28}{0.25}\right)^3 \left(\frac{0.12}{0.25}\right)}{\left(\frac{0.44}{0.25}\right)^2}$ $(1.12)^3 (0.48)$	4	One mark is given for dividing throughout by the volume.	
				If moles are used instead of concentration, candidates can only score a maximum of 2 marks in this part of the question.	
		$= \frac{1}{(1.76)^2}$		Allow values of between $0.217 - 0.22$ mol ² dm ⁻⁶	
		– 0.218 mol dm		Allow 1.36×10^{-2} if vol not used.	
				One mark is given for the correct units.	
	c)	to right / to products / forwards; increase;	2 max.		
	d)	to left / to reagent / backwards: no effect;	2 max.	Only temperature affects the value of K_c	
2	a)	i) moles of $C_2F_4 = 0.40$ moles of HC1 = 0.80	2	Look at the equation to get the ratio. Since 0.2 moles are left this means 0.8 have been used up to make products. The ratio of reactant to C_2F_4 is 2 : 1 so this means 0.4 moles of C_2F_4 are made. Since the ratio of reactant to HCl is 1 : 1 the moles of HCl is 0.8.	
		ii) $K_{c} = \frac{[C_{2}F_{4}][HCl]^{2}}{[CHClF_{2}]^{2}}$	1		
		iii) $K_{\rm c} = \frac{\left(\frac{0.40}{18.5}\right) \left(\frac{0.8}{18.5}\right)^2}{\left(\frac{0.20}{18.5}\right)^2}$	3	An incorrect K_c means you can only score a mark for units.	
		$= 0.35 \text{ mol dm}^{-3}$			

A A Chemistry Answers to examination-style questions

Answers N					Examiner's tips
	b)	i)	increase	1	Reaction is endothermic.
		ii)	decrease	1	There are more moles on the right side of the equilibrium.
3	a)	i)	moles of O_2 at equilibrium: $\frac{7.04}{32} = 0.22$	2	moles = mass $/M_r$ Twice as many moles of NO as O ₂ in the equilibrium equation.
			moles of NO at equilibrium: 0.44		
		ii)	Original number of moles of NO ₂ $\frac{21.3}{46} = 0.463$	2	1 mark can be given for the correct process of obtaining the answer.
			Number of moles of NO ₂ at equilibrium: $0.463 - 0.44 = 0.023$		Full marks are given for correct answer.
	b)	$K_{\rm c} =$	$=\frac{[\text{NO}]^2[\text{O}_2]}{[\text{NO}_2]}$	4	Remember to divide all concentrations by the total volume.
		$K_{\rm c}$ =	$= \frac{\left(\frac{0.44}{11.5}\right)^2 \times \left(\frac{0.22}{11.5}\right)}{\left(0.023\right)^2} = 7.0 \text{ mol dm}^{-3}$		One mark is given for the correct equation.
			$\left(\frac{0.025}{11.5}\right)$		One mark given for the correct units.
	c)	pV = T = -	$= nRT$ $\frac{pV}{pV} = \frac{(3.30 \times 10^5) \times (11.5 \times 10^{-3})}{(11.5 \times 10^{-3})}$	3	One mark is given for the correct rearranged equation. One mark is given just for using
		T =	<i>nR</i> 0.683 × 8.31 669 K		$V = 11.5 \times 10^{-3}$
	d)	the	yield is increased, $K_{\rm c}$ stays the sam	ie 2	$K_{\rm c}$ only affected by T and this stays the same.
4	a)	i)	$C + 3D \rightarrow 2A + B$	3	
		ii) iii)	mol dm ⁻³ forward reaction is exothermic		You could also say more products formed in iii).
	b)	i)	$N_2O_4 M_r = 92.0$	2	
			$Mol = \frac{36.8}{92.0} = 0.400$		
		ii)	mol N_2O_4 reacted = 0.400 - 0.180	2	

= 0.220mol NO₂ formed = 0.440

A A Chemistry Answers to examination-style questions

Answers				Marks	Examiner's tips
		iii)	$K_{\rm c} = \frac{(\rm NO_2)^2}{(\rm N_2O_4)}$	3	Put the products over the reactants to get K_c .
			$= \frac{\left(\frac{0.44}{16}\right)^2}{\left(\frac{0.18}{16}\right)} = 0.067$		One mark for each step in the calculation, full marks are given for the correct answer.
		iv)	The equilibrium will move to the right, K_c will remain the same	2	$K_{\rm c}$ only affected by T and this stays the same.
5	a)	i)	Increase higher <i>pressure</i> gives lower yield; the equilibrium shifts to reduce <i>p</i> or equilibrium favours side with fewer moles of gas	3	If this trend is wrong then there are no more marks for you in part i).
		ii)	Endothermic Increased temperature increases yield; Equilibrium shifts to reduce temperature or equilibrium favours endothermic direction	3	If this trend is wrong then there are no more marks for you in part ii).
	b)	i)	Moles of iodine = 0.023 Moles of HI = 0.172	2	
		ii)	$K_{\rm c} = \frac{[{\rm H}_2][{\rm I}_2]}{[{\rm HI}]^2}$	1	Square brackets must be used for K_c since this represents concentration.
		iii)	Volume cancels in K_c expression	1	Since there are the same numbers of moles on each side of the equation.
		iv)	$K_{\rm c} = \frac{(0.023)^2}{(0.172)^2}$ = 0.0179	2	
		v)	$K_{\rm c} = 55.9$	1	You can get a mark here consequential on you answer to part iv). It is the

reciprocal of you part iv) answer.