A2 AQA Chemistry Answers to examination-style questions

i)	2	1	
ii)	1	1	
iii)	0	1	It is easier to calculate the order with respect to B first in this example.
<i>k</i> =	$\frac{\text{rate}}{[D]^2[E]}$	3	Make sure you can rearrange formulae. The units are worth a mark so do not
or = 1.	$\frac{8 \cdot 36 \times 10^{-4}}{(0.84)^2 (1.16)}$ 02 × 10 ⁻³ mol ⁻² dm ⁶ s ⁻¹		Answers from 1.02×10^{-3} to 1.05×10^{-3} are acceptable to take account of rounding up in the numbers during the calculation.
i)	Expt 2 2.68×10^{-4}	3	Fewer than 2 dp here will be penalised. This gives 3 significant figs in answer.
	Expt 3 10.72×10^{-3} Expt 4 2.08×10^{-3}		Accept 10.7×10^{-4}
ii)	$k = \frac{\text{rate}}{[X]^2}$ or $\frac{2.68 \times 10^{-4}}{(1.20 \times 10^{-3})^2}$	3	Units are worth a mark so don't leave them out.
	$= 186 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$		In this case candidates often do part ii) to calculate <i>k</i> before part i).
incr	reases exponentially, i.e.	1	This is quite hard so a straight line like this was allowed: but not a curve like this:
	 ii) iii) <i>k</i> = or = 1. i) ii) ii) 	ii) 1 iii) 0 $k = \frac{\text{rate}}{[D]^{2}[E]}$ or $\frac{8 \cdot 36 \times 10^{-4}}{(0.84)^{2}(1.16)}$ = 1.02 × 10 ⁻³ mol ⁻² dm ⁶ s ⁻¹ i) Expt 2 2.68 × 10 ⁻⁴ Expt 3 10.72 × 10 ⁻⁴ Expt 4 2.08 × 10 ⁻³ ii) $k = \frac{\text{rate}}{[X]^{2}}$ or $\frac{2.68 \times 10^{-4}}{(1.20 \times 10^{-3})^{2}}$ = 186 mol ⁻¹ dm ³ s ⁻¹ increases exponentially, i.e.	ii) 1 1 1 iii) 0 1 $k = \frac{\text{rate}}{[D]^{2}[E]}$ or $\frac{8 \cdot 36 \times 10^{-4}}{(0.84)^{2}(1.16)}$ $= 1.02 \times 10^{-3} \text{ mol}^{-2} \text{ dm}^{6} \text{ s}^{-1}$ i) Expt 2 2.68×10^{-4} Expt 3 10.72×10^{-4} Expt 4 2.08×10^{-3} ii) $k = \frac{\text{rate}}{[X]^{2}}$ or $\frac{2.68 \times 10^{-4}}{(1.20 \times 10^{-3})^{2}}$ $= 186 \text{ mol}^{-1} \text{ dm}^{3} \text{ s}^{-1}$ increases exponentially, i.e. 1

A A Chemistry Answers to examination-style questions

Α	Answers			Marks	Examiner's tips
3	a)	i) k = -	$\frac{0.65}{(0.15)(0.24)^2}$	3	Answers between 74 and 77 are allowed due to rounding up of numbers in the calculation.
		=	$75.23 \text{ mol}^{-2} \text{dm}^6 \text{s}^{-1}$		
		ii)	$0.081 \text{ mol } \text{dm}^{-3} \text{ s}^{-1}$	1 max.	There are no marks given for the units here.
	b)	i)	2	1	Use experiments 1 and 2 here.
		ii)	0	1	Use experiments 1 and 3 here.
4	a)	ord ord	er with respect to P is 2 er with respect to Q is 1	2	Calculate Q first this time using experiments 2 and 3.
	b)	i)	rate = $k[R][S]^2$ rate = $4.2 \times 10^{-4} \times 0.16 \times 0.84^2$	3	If the equation is wrong there are no marks allowed in this part of the question. One mark is given for the full
			$= 4.7 \times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1}$		correct equation, full marks for the correct answer.
		ii)	$k = \frac{\text{rate}}{[\mathbf{R}][\mathbf{S}]^2} = \frac{8.1 \times 10^{-5}}{0.76 \times 0.98^2}$	2	Another example of rearranging the formula before you can put the numbers in, one mark is given for the correct formula full marks for the correct
		iii)	$= 1.1 \times 10$ T_1	1	Hint: If you calculated a value for $k > 4.2 \times 10^{-4}$ then you will be allowed the answer to iii) as $T_{2.}$
5	a)	i) ii)	2 0	2	
	b)	i)	$k = \frac{\text{rate}}{[\text{NO}]^2 [\text{O}_2]}$	2	One mark is given for the correct formula full marks for the correct answer.
			$=\frac{6.5\times10^{-4}}{(5.012\times10^{-2})^2(2.0\times10^{-2})}=13$	i	
			Units = $mol^{-2} dm^6 s^{-1}$		
		ii)	rate = $13 (6.5 \times 10^{-2})^2 (3.4 \times 10^{-2})$	2	One mark will be given even if k is incorrect from question b) i).
			$= 1.9 \times 10^{-3} \text{ mol } \text{dm}^{-3} \text{ s}^{-1}$		Units are needed for full marks to be

Units are needed for full marks to be gained.