

Answers	Marks	Examiner's tips	
1 a) X (O–H) (alcohols) Y C=O	2	Accept carbonyl group instead.	
A :	1	These cannot be carboxylic acids since	
بر ال _ل	4	the peak is for OH alcohols.	
$H_{2}C-C-CH_{3}$ $H_{2}C-CH_{2}-C$ $H_{3}C-C-C$ $H_{3}C-C-C$ $H_{3}C-C-C$	3		
b) H ₂ C=C-CH ₂ CH ₃ H ₃ C-C=CHCH ₃ H ₃ C-CH-CH=C	CH ₂ 2		
$H_2C = C - CH_2CH_3$ $H_3C - C = CHCH_3$ $H_3C - CH - CH = CH_3$ CH_3 CH_3 CH_3	3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r CH ₂ 3		
Splitting is 6:3:1	1	This must be written on its own. If you put it under a structure then it must be the correct structure (the middle one).	
6 singlet	1	If the 6:3:1 is missing then you cannot	
3 doublet	1	get the splitting marks. Also the splitting must refer to the correct peak.	
1 quartet	1		
2 a) i) 3 peaks $M/Z = 126, 128 \text{ and } 130$	3	You can show which Cls are in each peak so you will demonstrate that there are 3 peaks.	
W/Z = 120, 120 and 130		Correct M/Z will be worth 1 mark.	
$(C_4H_8Cl_2)^{+} \longrightarrow CH_3CH_2 - \overset{\dagger}{C}H + \overset{\bullet}{C}H_2Cl_2$	3	Each of these species is worth one mark since you have to give the molecular ion and the equation.	
b) i) optical; equal mixture of enantiomers; optically inactive plane polarised light; rotated in opposite/different directions	5		
ii) planar carbocation/intermediate / attack from either side equally likely	2		

Ansv	vers		Marks	Examiner's tips
c)	i)	2 peaks ratio 6:2 or 3:1 doublet quartet	4	You may find it helpful to draw the structure out before you look at the neighbouring Hs and determine the splitting pattern.
	ii)	S: Cl H ₃ C — C — CH ₂ CH ₃ Cl	2	You must use the numbers given in the question. Don't just keep trying look at the 3s. These usually refer to the Hs in a CH ₃ .
		T:	-	
		CH ₃ H ₃ C — C — CH ₂ Cl Cl		
3 a)	i)	H ₃ C — C O	4	Accept RCOCH ₃
	ii)	H ₃ C—O		Accept ROCH ₃
	iii)	CH ₂ CH ₂		Remember it is the $(N+1)$ rule for splitting where $N = neighbours$.
	iv)	CH ₃ — C—CH ₂ —CH ₂ —OCH ₃ 0		You can write this on the line, i.e. $CH_3COCH_2CH_2OCH_3$.
b)	i)	OH in acids	2	Accept carboxylic acid.
	ii)	CH ₃ CH ₃ —C—COOH CH ₃		

Answers to examination-style questions

Marks Examiner's tips **Answers** 2 **4** a) C: The absorption is for C=O. The absorption is for OH alcohols. Remember a quartet and a triplet is an 2 ethyl group. Singlets mean there are no neighbouring H's to split the peak. c) 2 The absorption in the IR means that both must have a C=C. The fact that neither exhibits E–Z isomerism means that the molecules have 2 of the same group on one end of the molecule (at least).

Answers to examination-style questions

Answers			Marks	Examiner's tips	
5	a)	X is methyl propanoate	1		
	b)	Spectrum 2 Y is CH ₃ COOCH ₂ CH ₃	4	Answers must relate to stated integration values.	
		accept either of these two options:			
		at δ 3.7 – 4.1 (1) spectrum of X should have integration of 3 and is a singlet (1) or			
		at $\delta 2.1 - 2.6$ (1) spectrum of X should have integration of 2 and is a quartet (1)			
6	a)	C=O	1	You could say carbonyl group.	
	b)	 i) Cl has 2 isotopes ii) Fragmentation: CH₃ - C = O Equation: 	3	Must show the ion, if the ion is wrong then do not award the equation mark either. The isotopes of Cl are ³⁵ Cl and ³⁷ Cl.	
		$C_4H_7ClO^+ \rightarrow CH_3 CO + C_2H_4Cl$			
	c)	i) CDCl ₃ or CCl ₄	2	There must be no Hs in the solvent or that would interfere with the spectrum.	
		ii) Si(CH ₃) ₄			
	d)	Number of 1 0 3 adjacent, non-equivalent protons	1	Both these numbers must be correct for the mark.	
	e)	CH ₃ — C — CH — CH ₃	1		