A2 AQA Chemistry

Answers to examination-style questions

	nsw	Answers			Examiner's tips	
1	a)	on t elec	charge on the oxide ion is bigger that he chloride ion. Therefore the trostatic attraction between the ions is nger.		Accept the answer that the size of the oxide ion is smaller than the chloride ion.	
	b)	solu Mg	O, which is a white solid, is slightly ble in water: $O + H_2O \rightarrow Mg(OH)_2$	6	In the equation, you could have $Mg^{2+} + 2OH^{-}$.	
		The	pH is 8 to 10.		Oxides of metals are basic or alkaline dissolved in water.	
		SO_2	dissolves:			
			$H_2 + H_2 O \rightarrow H_2 SO_3$			
		The	pH is 1 to 4.		Oxides of non-metals are acidic if dissolved in water.	
	c)	Al(0	$OH)_3 + OH^- \rightarrow Al(OH)_4^-$	4	One mark given for the $Al(OH)_4^-$ and one for the balanced equation.	
		Al(0	$OH)_3 + 3H^+ + 3H_2O \rightarrow Al(H_2O)_6^{3+}$		One mark given for the $Al(H_2O)_6^{3+}$ and one for the balanced equation.	
2	or f pH	forms of so	igorous or exothermic reaction; a colourless solution, dution formed is 13 or 14. $H_2O \rightarrow 2NaOH$	6		
	P_4O_{10} or P_2O_5 : vigorous or exothermic reaction; or forms a colourless solution, pH of solution formed is 0 or 1.				You can write an ionic equation if you prefer.	
	•		$6H_2O \rightarrow 4H_3PO_4$		You could write an equation from P ₂ O	
3	a)	i)	ionic	3		
		ii)	sodium			
		,				
		iii)	$Na_2O + H_2O \rightarrow 2NaOH$			
	b)	,	$Na_2O + H_2O \rightarrow 2NaOH$ covalent	3		
	b)	iii)		3		

A2 AQA Chemistry

Answers to examination-style questions

Ansv	vers		Marks	Examiner's tips
c)	i)	i) macromolecular	4	Accept: giant covalent or giant molecular.
	ii)	silicon		
	iii)	e.g. $CaO + SiO_2 \rightarrow CaSiO_3$		One mark for the base used, i.e. CaO, and one mark for the balanced equation
4 a)	i)	P ₄ O ₁₀ or SO ₃	2	This means it will be an acidic solution and therefore an oxide of a non-metal. This means it will be an alkaline solution and therefore an oxide of a metal.
	ii)	Na ₂ O		
b)	i)	$MgO + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2O$	3	You could also have an ionic equation i.e. $MgO + 2H^+ \rightarrow Mg^{2+} + H_2O$
		$2NaOH + SiO_2 \rightarrow Na_2SiO_3 + H_2O$		You could also have an ionic equation i.e. $SiO_2 + 2OH^- \rightarrow 2Na^+ + H_2O$
		$3Na_2O + 2H_3PO_4 \rightarrow 2Na_3PO_4 + 3H_2V_3$	0	You could also have an ionic equation i.e. $Na_2O + 2H^+ \rightarrow 2Na^+ + H_2O$
c)	P_4O_{10} is molecular or simple covalent. This means that there are weak intermolecular forces between molecules.		4	These forces are van der Waals forces
	SiO_2 is a macromolecule or giant covalent molecule.		t	
	Many strong covalent bonds must be broken.			These bonds must be stated to be covalent and remember they are between the atoms in the giant molecule.
5	pН	$O + H_2O \rightarrow 2NaOH$ = 14 $2 + H_2O \rightarrow H_2SO_3$	4	Remember oxides of metals give alkaline solutions when dissolved and oxides of non-metals give acidic solutions when dissolved.

AQA Chemistry

Answers to examination-style questions

Ansv	vers		Marks	Examiner's tips Since the identity is asked for, you can give a formula or a name. If a formula is given this must be correct.
6 a)	i)	 P is Na₂O or sodium oxide. ionic Ions are not free to move in the solid state. Ions are free to move when molten or in aqueous solution. Na₂O + H₂O → 2NaOH 	9	
	ii)	Q is SO ₂ or sulfur dioxide. covalent Intermolecular forces are weak or van der Waals forces are weak. SO ₂ + H ₂ O \rightarrow H ₂ SO ₃		Since the identity is asked for, you can give a formula or a name. If a formula i given this must be correct. The intermolecular forces are not hydrogen bonds.
b)	i)	amphoteric	6	This is because it reacts with acids and alkalis.
	ii)	$Al(OH)_3 + NaOH \rightarrow NaAl(OH)_4$		In this equation one mark is for stating that R is Al(OH) ₃ and the other for a balanced equation. You could also have ionic equations, e.g. Al(OH) ₃ + OH ⁻ \rightarrow [Al(OH) ₄] ⁻
				You could start with the identity of R a Al(OH) ₃ (H ₂ O) ₃ and so the equation would be Al(OH) ₃ (H ₂ O) ₃ + OH ⁻ \rightarrow [Al(OH) ₄ (H ₂ O) ₂] ⁻ + H ₂ O
	2A1	$(OH)_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 6H_2O$		You could start with Al(OH) ₃ (H ₂ O) ₃ and have H ⁺ as the acid, so the equation would be Al(OH) ₃ (H ₂ O) ₃ + H ⁺ \rightarrow [Al(OH) ₂ (H ₂ O) ₄] ⁺ + H ₂ O In the equation there is one mark for the correct product and one mark for the balanced equation.
	iii)	 There is only one mark here and any of the following answers are acceptable: large lattice energy strong covalent bonds 		

- ΔH_{soln} is very positive.
- ΔG is very positive.
- The sum of the hydration energies is less than the covalent bond energies.