Answers to examination-style questions

Answers

Marks Examiner's tips

1 a) The charge on the oxide ion is bigger than on the chloride ion. Therefore the electrostatic attraction between the ions is stronger.
b) MgO , which is a white solid, is slightly soluble in water:
$\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}$
The pH is 8 to 10 .
SO_{2} dissolves:
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
The pH is 1 to 4 .
c) $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}$
$\mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$
$2 \mathrm{Na}_{2} \mathrm{O}$: vigorous or exothermic reaction; or forms a colourless solution, pH of solution formed is 13 or 14 .
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
$\mathrm{P}_{4} \mathrm{O}_{10}$ or $\mathrm{P}_{2} \mathrm{O}_{5}$: vigorous or exothermic reaction; or forms a colourless solution, pH of solution formed is 0 or 1 .
$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$
You can write an ionic equation if you prefer.

You could write an equation from $\mathrm{P}_{2} \mathrm{O}_{5}$.

3 a) i) ionic
ii) sodium
iii) $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
b) i) covalent
ii) phosphorus
iii) $\mathrm{H}_{3} \mathrm{PO}_{4}$

Oxides of non-metals are acidic if dissolved in water.

One mark given for the $\mathrm{Al}(\mathrm{OH})_{4}^{-}$ and one for the balanced equation. One mark given for the $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ and one for the balanced equation.
Accept the answer that the size of the oxide ion is smaller than the chloride ion.

In the equation, you could have $\mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}$.

Oxides of metals are basic or alkaline if dissolved in water.

Answers

Marks Examiner's tips

5

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH} \\
& \mathrm{pH}=14 \\
& \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3} \\
& \mathrm{pH} 1-3
\end{aligned}
$$

c) i) macromolecular
ii) silicon
iii) e.g. $\mathrm{CaO}+\mathrm{SiO}_{2} \rightarrow \mathrm{CaSiO}_{3}$

4 a) i) $\mathrm{P}_{4} \mathrm{O}_{10}$ or SO_{3}
ii) $\mathrm{Na}_{2} \mathrm{O}$
b) i) $\mathrm{MgO}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& 2 \mathrm{NaOH}+\mathrm{SiO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
& 3 \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

c) $\mathrm{P}_{4} \mathrm{O}_{10}$ is molecular or simple covalent. This means that there are weak intermolecular forces between molecules.
SiO_{2} is a macromolecule or giant covalent molecule.

Many strong covalent bonds must be broken.

One mark for the base used, i.e. CaO , and one mark for the balanced equation.

This means it will be an acidic solution and therefore an oxide of a non-metal. This means it will be an alkaline solution and therefore an oxide of a metal.

You could also have an ionic equation, i.e. $\mathrm{MgO}+2 \mathrm{H}^{+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{H}_{2} \mathrm{O}$

You could also have an ionic equation, i.e. $\mathrm{SiO}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$

You could also have an ionic equation, i.e. $\mathrm{Na}_{2} \mathrm{O}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$

These forces are van der Waals forces.

These bonds must be stated to be covalent and remember they are between the atoms in the giant molecule.

Remember oxides of metals give alkaline solutions when dissolved and oxides of non-metals give acidic solutions when dissolved.

Answers

Marks Examiner's tips

6 a) i) \mathbf{P} is $\mathrm{Na}_{2} \mathrm{O}$ or sodium oxide.
ionic
Ions are not free to move in the solid state.
Ions are free to move when molten or in aqueous solution.
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
ii) \mathbf{Q} is SO_{2} or sulfur dioxide.
covalent
Intermolecular forces are weak or van der Waals forces are weak.
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$
b) i) amphoteric
ii) $\quad \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaAl}(\mathrm{OH})_{4}$
$2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$

$2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}+6 \mathrm{H}_{2}\right.$

Since the identity is asked for, you can give a formula or a name. If a formula is given this must be correct. The intermolecular forces are not hydrogen bonds.

This is because it reacts with acids and alkalis.
In this equation one mark is for stating that \mathbf{R} is $\mathrm{Al}(\mathrm{OH})_{3}$ and the other for a balanced equation. You could also have ionic equations, e.g. $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{OH}^{-} \rightarrow$ $\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$
You could start with the identity of \mathbf{R} as $\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ and so the equation would be $\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{OH}^{-} \rightarrow$ $\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}+\mathrm{H}_{2} \mathrm{O}$
You could start with $\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ and have H^{+}as the acid, so the equation would be $\mathrm{Al}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+\mathrm{H}^{+} \rightarrow$ $\left[\mathrm{Al}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{+}+\mathrm{H}_{2} \mathrm{O}$
In the equation there is one mark for the correct product and one mark for the balanced equation. e

.
\qquad
iii) There is only one mark here and any of the following answers are acceptable:

- large lattice energy
- strong covalent bonds
- $\Delta H_{\text {soln }}$ is very positive.
- ΔG is very positive.
- The sum of the hydration energies is less than the covalent bond energies.

Since the identity is asked for, you can give a formula or a name. If a formula is given this must be correct.

