Answers

Marks Examiner's tips

1 a) i) Fe^{2+}
ii) $\quad \mathrm{F}_{2} \mathrm{O}$
iii) Fe^{2+}
Cl^{-}
b) i) $\mathrm{emf}=E_{\text {right }}^{\ominus}-E_{\text {left }}^{\ominus}$
$=1.52-0.77=0.75 \mathrm{~V}$
ii) $\quad \mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$
iii) It decreases.

The equilibrium or reaction shifts to the right-hand side.
The electrode potential for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ becomes less positive.

2 a) Zn
b) i) Fe^{2+}
ii) Cl_{2}
c) i) The standard electrode potential: 1.25 V
ii) $\mathrm{Tl}^{3+}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Fe}^{3+}+\mathrm{Tl}^{+}$

3 a) i) $\mathrm{MnO}_{4}{ }^{-} / \mathrm{Mn}^{2+}$ has a more positive E^{\ominus} value than $\mathrm{Cl}_{2} / \mathrm{Cl}^{-}$and will oxidise Cl^{-}to Cl_{2}.
ii) $\mathrm{NO}_{3}{ }^{-} / \mathrm{HNO}_{2}$ has a more positive E^{\ominus} value than $\mathrm{Fe}^{3+/} \mathrm{Fe}^{2+}$ and so will oxidise Fe^{2+} to Fe^{3+}.

If you write more than two answers, then you start to lose marks.

Also remember 'positive potentials oxidise others'.

At the negative electrode there is an oxidation reaction.

Accept: 'in favour of more Fe^{3+}.

This is always the species with the most negative E value (it is oxidised itself).

2

Remember that: $E_{\text {cell }}=E_{\text {right }}-E_{\text {left }}$

One mark for a balanced equation and one for the correct direction.

You can use the E-values to explain if you want to, for both parts.
Answers
b) i) 0.5 V
ii) $2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}$
$\rightarrow 10 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}$

4 a) $1.00 \mathrm{~mol} \mathrm{dm}^{-3} ; 100 \mathrm{kPa}$
b) i) 0.43 V
ii) $2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}$
$2 \mathrm{BrO}_{3}^{-}+10 \mathrm{Br}^{-}+12 \mathrm{H}^{+}$
$\rightarrow 6 \mathrm{Br}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Marks Examiner's tips

3
Remember that $E_{\text {cell }}=E_{\text {right }}-E_{\text {left }}$
One mark is given for a balanced equation and one is for having $\mathrm{SO}_{4}{ }^{2-}$ and MnO_{4}^{-}on the right-hand side of the equation.

This is part of the definition, so learn these conditions.

Remember that $E_{\text {cell }}=E_{\text {right }}-E_{\text {left }}$
Remember oxidation is at the left-hand half cell, which is the half cell with the lower E value.
One mark is given for all the correct species and one mark for balancing the equation.
Accept: $\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow$ $3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ which is half of the other equation.

