A2 AQA Chemistry Answers to examination-style questions

Answers				Marks	Examiner's tips	
1	a)	$1s^2 2s^2 2p^6 3s^2 3p^6$		1		
	b)	S-(g	g)		The state symbol must be included.	
	c)		negative S ^{$-$} ion repels the electron ng added.	2		
	d)	i)	enthalpy of atomisation of sulfur	3	Learn what the steps are called in a Born– Haber cycle and the equations	
		ii)	second ionisation enthalpy of calcium		go with each step.	
		iii)	second electron affinity of sulfur			
	e)		electron is more strongly attracted to nucleus or to the Ca^+ ion.	o 2		
	f)	+ $178 + 279 + 590 + 1145 - 200 + \Delta H^{\circ}$ 3013 + 482 = 0 $\Delta H^{\circ} = 539 \text{ kJ mol}^{-1}$		2	If you get this the wrong way round, there is a penalty. Allow one mark for -539 kJ mol^{-1} . If you have put all the numbers in the right place and made an arithmetic error, then you could possibly get the two marks.	
2	a)	Particles are in a maximum state of order		. 1	Accept: no disorder or that entropy is zero at 0 K by definition.	
	b)	Ice melts.		1	Accept the reverse, i.e. water freezes. Accept water changes from solid to liquid or from liquid to solid.	
	c)	The increase in disorder is bigger at T_2 .		2		
	d)	i)	Moles of water = $\frac{1.53}{18} = 0.085$ Heat change per mole = $\frac{3.49}{0.085} = 41.1 \text{ kJ mol}^{-1}$	6	This is an endothermic change so the heat change is $+$. If you put a $-$ sign in your answer this will be penalised.	
		ii) iii)	$\Delta G = \Delta H - T\Delta S$ $\Delta H = T\Delta S$ $\Delta S = \frac{41.1}{373} = 0.110 \text{ kJ K}^{-1} \text{ mol}^{-1}$ or 110 J K ⁻¹ mol ⁻¹		If the alternative data of 45 kJ mol^{-1} we used, the answer is $0.12 \text{ kJ K}^{-1} \text{ mol}^{-1}$. One mark is awarded for the value and one for the units.	

A2 AQA Chemistry

Answers to examination-style questions

Answers		Marks	Examiner's tips
3 a) i)		9	ΔH^{\bullet}_{a} = enthalpy of atomisation
Ba ²⁺ (g) + 2e ⁽⁻⁾ + 2Cl(g)			ΔH^{\bullet}_{sub} = enthalpy of sublimation i.e.
$1 2\Delta H_a$ (chlorine)	2 × EA(chlorine)		solid to gas H
Ba ²⁺ (g) + 2e ⁽⁻⁾ + Cl ₂ (g)	34		$\Delta H^{\mathbf{e}}_{\mathbf{f}} = $ enthalpy of formation
2nd IE(Ba)	Ba ²⁺ (g) + 2Cl ⁻ (g)	-+	EA = electron affinity
			IE = ionisation energy
Ba ⁺ (g) + e ⁽⁻⁾ + Cl₂(g) 1st IE(Ba)	Lattice (formation)		In this Born–Haber cycle the Ba has a first and a second ionisation energy
$Ba(g) + Cl_2(g)$	enthalpy		
$\Delta H_{a}(Ba) \text{ or } \Delta H_{sub}(Ba)$			In this type of calculation there is a or mark penalty for each error. Keep going and gain as many marks as
$Ba(s) + Cl_2(g)$			possible.
$\Delta H_{\rm f}$ (BaCl ₂)			

4

ii) $\Delta H_{a}^{e}(Ba) + 1$ st IE(Ba) + 2nd IE(Ba) + $2\Delta H_{a}^{e}(Cl) + 2EA(Cl) + LE - \Delta H_{f}^{e}(BaCl_{2}) = 0$

BaCl₂(s)

 $+180 + 503 + 965 + (2 \times 122) +$ 2EA(Cl) - 2056 + 859 = 0

$$EA = -\frac{695}{2} = -347.5$$

b) $\Delta S = \Sigma S$ products $-\Sigma S$ reactants

$$= 63 + 223 - 124 = 162$$

$$\Delta G = \Delta H - T \Delta S$$

or since $\Delta G = 0$, $\Delta H = T\Delta S$ $\Delta H = 859 \times 10^3 = T \times 162$

$$T = 5302 \text{ K}$$

The units are K. If you put °C, this will be penalised.

There is a mark lost for each error, but the calculation is marked

consequentially on your value of ΔS .

 $\Delta H = 859 \times 10^3$, since this refers to the dissociation of barium chloride and not the formation as given in the table of data. You also need to factor in the 1000 for J rather than kJ, since entropy is in J.

A2 AQA Chemistry

AQ	Chemistry	Chapter 12					
Answers to examination-style questions							
Answers	6	Marks	Examiner's tips				
4 a) i) ii)	a) i) $\Delta H_{R}^{\bullet} = \Sigma \Delta H_{f}^{\bullet}(\text{products}) - \Sigma \Delta H_{f}^{\bullet}(\text{react})$ $\Delta H_{R}^{\bullet} = ([2 \times 0] + [3 \times -393.5]) - (-824.2 + [3 \times -11]) - (-824.2 + [3 \times -11$	5])	If you get the equations the wrong way round you can only score a maximum of one mark for each, since your answers will have the wrong sign.				
	(or ΔS positive) Hence ΔG is always negative.		Accept 'the reaction is feasible when $\Delta G \leq 0$ '.				
Here $T =$	$H = 0 = \Delta H - T\Delta S$ ince $\Delta H = T\Delta S$ $= \frac{\Delta H}{\Delta S} = 492.7 \times \frac{1000}{542.6}$ = 908 K	3	If you miss out the 1000, you will lose one mark.				
		3	If you miss out the 1000, you will lose one mark.				

 $(-24.8 \times 10^3 - T \times 15.2)$

AQA Chemistry A2 © Nelson Thornes Ltd 2009

 $517.5 \times 10^3 = 527.4 T$

 $T = 981.2 \,\mathrm{K}$