Answers to examination-style questions

Answers

Marks Examiner's tips

1 a) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$
b) $\quad \mathrm{S}^{-}(\mathrm{g})$
c) The negative S^{-}ion repels the electron being added.
d) i) enthalpy of atomisation of sulfur
ii) second ionisation enthalpy of calcium
iii) second electron affinity of sulfur
e) The electron is more strongly attracted to the nucleus or to the Ca^{+}ion.
f) $+178+279+590+1145-200+\Delta H^{\ominus}-$ $3013+482=0$
$\Delta H^{\ominus}=539 \mathrm{~kJ} \mathrm{~mol}^{-1}$

2 a) Particles are in a maximum state of order.
b) Ice melts.
c) The increase in disorder is bigger at T_{2}.
d) i) Moles of water $=\frac{1.53}{18}=0.085$

Heat change per mole $=$

$$
\frac{3.49}{0.085}=41.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

ii) $\Delta G=\Delta H-T \Delta S$
iii) $\Delta H=T \Delta S$
$\Delta S=\frac{41.1}{373}=0.110 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
or $110 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

The state symbol must be included.

Learn what the steps are called in a Born- Haber cycle and the equations to go with each step.

If you get this the wrong way round, there is a penalty.
Allow one mark for $-539 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
If you have put all the numbers in the right place and made an arithmetic error, then you could possibly get the two marks.

Accept: no disorder or that entropy is zero at 0 K by definition.

Accept the reverse, i.e. water freezes. Accept water changes from solid to liquid or from liquid to solid.

This is an endothermic change so the heat change is + . If you put a $-\operatorname{sign}$ in your answer this will be penalised.

If the alternative data of $45 \mathrm{~kJ} \mathrm{~mol}^{-1}$ was used, the answer is $0.12 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. One mark is awarded for the value and one for the units.

Answers

Marks Examiner's tips

3 a) i)

$\mathrm{Ba}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-1)}+2 \mathrm{Cl}(\mathrm{g})$	
$2 \Delta H_{\mathrm{a}}$ (chlorine)	$2 \times$ EA(chlorine)
$\mathrm{Ba}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-1)}+\mathrm{Cl}_{2}(\mathrm{~g})$	
2nd $\mathrm{IE}(\mathrm{Ba})$	$\underline{\mathrm{Ba}^{2+}(\mathrm{g})+2 \mathrm{Cl}^{-}(\mathrm{g})}$
$\mathrm{Ba}^{+}(\mathrm{g})+\mathrm{e}^{(-)}+\mathrm{Cl}_{2}(\mathrm{~g})$	
1st IE(Ba)	
$\mathrm{Ba}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$	enthalpy
$\Delta H_{\mathrm{a}}(\mathrm{Ba})$ or $\Delta H_{\text {sub }}(\mathrm{Ba})$	
$\mathrm{Ba}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$	
$\Delta H_{f}\left(\mathrm{BaCl}_{2}\right)$	
$\mathrm{BaCl}_{2}(\mathrm{~s})$	

ii) $\quad \Delta H_{\mathrm{a}}^{\ominus}(\mathrm{Ba})+1$ st $\mathrm{IE}(\mathrm{Ba})+2 \mathrm{nd} \mathrm{IE}(\mathrm{Ba})+$ $2 \Delta H^{\ominus}(\mathrm{Cl})+2 \mathrm{EA}(\mathrm{Cl})+\mathrm{LE}-$ $\Delta H^{\ominus}{ }_{\mathrm{f}}\left(\mathrm{BaCl}_{2}\right)=0$ $+180+503+965+(2 \times 122)+$ $2 \mathrm{EA}(\mathrm{Cl})-2056+859=0$
$E A=-\frac{695}{2}=-347.5$
b) $\Delta S=\Sigma S$ products $-\Sigma S$ reactants

$$
=63+223-124=162
$$

$\Delta G=\Delta H-T \Delta S$
or since $\Delta G=0, \Delta H=T \Delta S$
$\Delta H=859 \times 10^{3}=T \times 162$
$T=5302 \mathrm{~K}$

9

-

$\Delta H_{\mathrm{a}}^{\ominus}=$ enthalpy of atomisation
$\Delta H^{\ominus}{ }_{\text {sub }}=$ enthalpy of sublimation i.e.
solid to gas H
$\Delta H_{\mathrm{f}}^{\mathrm{f}}=$ enthalpy of formation
$\mathrm{EA}=$ electron affinity
$\mathrm{IE}=$ ionisation energy
In this Born-Haber cycle the Ba has a first and a second ionisation energy

In this type of calculation there is a one mark penalty for each error. Keep going and gain as many marks as possible.

The units are K . If you put ${ }^{\circ} \mathrm{C}$, this will be penalised.
There is a mark lost for each error, but the calculation is marked consequentially on your value of ΔS.
$\Delta H=859 \times 10^{3}$, since this refers to the dissociation of barium chloride and not the formation as given in the table of data. You also need to factor in the 1000 for J rather than kJ , since entropy is in J .

Answers to examination-style questions

Answers

Marks

4 a) i) $\Delta H_{\mathrm{R}}^{0}=\Sigma \Delta H_{\mathrm{f}}^{0}($ products $)-$
$\Sigma \Delta H_{\mathrm{f}}^{\oplus}(\text { reactants })^{9}$

$$
\begin{aligned}
& \Delta H_{\mathrm{R}}^{\theta}=([2 \times 0]+[3 \times-393.5])- \\
&(-824.2+[3 \times-110.5])
\end{aligned}
$$

$$
=-24.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\Delta S=\Sigma S$ (products) $-\Sigma S($ reactants $)$
$\Delta S=([2 \times 27.3]+[3 \times 213.6])-$ $(87.4+[3 \times 197.6])$
$=(54.6+640.8)-(87.4+592.8)$
$=15.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
ii) $\Delta G=\Delta H-T \Delta S$
ΔH is negative and $-T \Delta S$ is negative (or ΔS positive)
Hence ΔG is always negative.
b) $\Delta G=0=\Delta H-T \Delta S$

Hence $\Delta H=T \Delta S$
$T=\frac{\Delta H}{\Delta S}=492.7 \times \frac{1000}{542.6}$
$=908 \mathrm{~K}$
c) $\Delta G(b)=\Delta G(a)$
$\left(492.7 \times 10^{3}-T \times 542.6\right)=$ $\left(-24.8 \times 10^{3}-T \times 15.2\right)$
$517.5 \times 10^{3}=527.4 T$
$T=981.2 \mathrm{~K}$

If you get the equations the wrong way round you can only score a maximum of one mark for each, since your answers will have the wrong sign.

Accept 'the reaction is feasible when $\Delta G \leq 0$ '.

If you miss out the 1000 , you will lose one mark.

If you miss out the 1000, you will lose one mark.

