A2 AQA Chemistry Answers to examination-style questions

Answers Ma					Examiner's tips
1	a)	orde orde	er with respect to $\mathbf{A} = 1$ er with respect to $\mathbf{B} = 2$	2	
	b)	i)	rate = $k [\mathbf{C}][\mathbf{D}]^2$	1	
		ii)	$k = \frac{1.45 \times 10^{-4}}{(2.5 \times 10^{-2})(6.65 \times 10^{-2})^2}$	3	If you place the units in the equation and cancel them out as you would with numbers, your answer will have the correct units
			Rate = $1.31 \text{ mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$		
2	a)	i)	electrophilic addition	1	
		ii)	CH ₃ -CH=CH-CH ₃	1	The structure must show the C=C bond to which the HBr has added.
	b)	nuc	leophilic substitution	1	Three marks are for the curly arrows and one is for the structure with the N^+
	CH ₃		$\begin{array}{ccc} & \text{Sr} \\ \text{H}-\text{CH}_2\text{CH}_3 \longrightarrow & \text{CH}_3-\text{CH}-\text{CH}_2\text{CH} \\ & & \downarrow \\ & \text{H}-\overset{+}{}\text{N}-\text{H} \\ & & \downarrow \\ & \text{SNH}_3 & & \text{H} \end{array}$	4 ₃	If you do not show the lone pair on the N of ammonia you will lose the mark for the curly arrow drawn from the ammonia molecule.
	c)	i)	$C_4H_9Br \rightarrow C_4H_{11}N$	3	If you achieve the correct answer of 2.85g, you should be awarded full
			$M_{\rm r} = 137$ and $M_{\rm r} = 73$ 0.0730 × 73 = 5.33		marks.
			$53.4\% = 0.534 \times 5.33 = 2.85$ g		
		ii)	Further substitution can happen.	1	Hint: you can say ' G reacts with F ' or 'there is a further reaction to form secondary and tertiary amines'. 'Other products formed' does not merit a mark.
	d)	4 pe	eaks, $a =$ doublet, $b =$ triplet	3	
	e)	i)	CH-	1	
		H₃C	$Z - C - NH_2$		
			CH ₃		

1

A A Chemistry Answers to examination-style questions

Answers	Marks	Examiner's tips
ii) H ₃ C — N — CH H	1 (CH ₃) ₂	
iii) H ₃ C—N—CH CH ₃	1 ₂ CH ₃	You must count the different environments of the hydrogens. Each environment has a different peak.
3 a) i) A CH_3 C	1 CH ₃ CH ₃	The 1650 is a C=C bond.
B	1	Do not allow incorrect structures, e.g. with H_2 on all the Cs in the ring like this:
Or showing all H's, i.	e.	H ₂
H H H H H H H H H H H		Methylcyclopentane is allowed.
ii) C $H_3C - C - I$ $H_3C - C - I$ CH_3	1 C H	You could write this as (CH ₃) ₃ CCHO but not as (CH ₃) ₃ CCOH.
ii) D CH ₃ CH ₂ —C	$C - CH_2CH_3$	Formula allowed, e.g C ₂ H ₅ COC ₂ H ₅
iii) E CH ₃ CH ₂ COO	1 DH	

Unit 4

A A Chemistry Answers to examination-style questions

Answers		Marks	Examiner's tips
	F HCOOCH ₂ CH ₃	1	This can be written as HCO ₂ CH ₂ CH ₃ .
iv)	G Any of the following are answers: CH ₃ CH=CHCH ₂ CH ₂ CH ₃ CH ₃ CH=CHCH(CH ₃) ₂ CH ₃ CH ₂ CH=CHCH ₂ CH ₃	1	You must show C=C in alkenes.
	$CH_3 CH_3 CH_3 CH_2 CH_2 CH_3 CH_2 CH_2 CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$		
	H H C H ₃ C C C C H ₂ CH ₂ CH ₂	1	There must be 4 different groups around the C.
v)	I $H_3C - C - CH_2CH_3$ $H_3C - C - CH_2CH_3$ OH	1	
v)	J $H_3C \stackrel{ }{-} CH_3$ $H_3C \stackrel{ }{-} CH_2OH$ CH_3	1	
b) i)	5	1	Each H must be in a completely different environment.
ii)	<i>a</i> singlet <i>b</i> triplet	2	

A2 AQA Chemistry Answers to examination-style questions

Answers	Marks	Examiner's tips		
4 a) i) <i>N</i> -methylpropanamide nucleophilic addition-eliminatic	2 on			
$CH_{3}CH_{2} C C CH_{3}CH_{2} C CI M^{4}$ $M_{1} CI CI CI M^{4}$ $CH_{3} NH_{2} H_{2} H_{3} H_{2}$	4 for structure for 3 arrows d lone pair	Each curly arrow gives one mark (M1, M2, M3 and M4).		
ii) $CH_3CH_2 - C O CH_3CH_2 - C O O CH_3CH_2 - C O O O O O O O O O O O O O O O O O O$	1	You could put C_2H_5 so the minimum formula you could write would be $(C_2H_5CO)_2O$.		
iii) $[CH_3CH_2CONHCH_3^{+*}]$ $\rightarrow CH_3CH_2CO^{+} + CH_3NH^{*}$	3	You can put $C_4H_9NO^+$ as the first species. There is one mark for each correct species.		
b) nucleophilic addition OH $H_2C - C - CN$ H	4			
reagent: H_2/Ni type of reaction: hydrogenation or reduction		You could have Na/ethanol or $LiAlH_4$ as the reagent in a reduction reaction.		
5 a) i) proton donor	1			
ii) completely dissociated in soluti	on 1			
b) i) $7.05 \times 10^{-3} \times \frac{105}{50} = 0.141$	1			
ii) $-\log [H^+]$	1	This is a definition that is often asked for.		

Unit 4

A A Chemistry Answers to examination-style questions

Answers	6	Marks	Examiner's tips
iii)	0.85	1	You can obtain this from your answer to i) .
iv)	pH = 1, so [H ⁺] = 0.10 mol dm ⁻³ vol = $\frac{(7.05 \times 10^{-3})}{0.10}$	3	
	$= 7.05 \times 10^{-2} \text{ dm}^3 \text{ or } 70.5 \text{ cm}^3$		You must put the correct units. They are necessary for the correct answer.
c) i)		1	You cannot have
	$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{X}^{-}]}{[\mathrm{HX}]}$		$\frac{[H^+]^2}{[HX]}$
ii)	$K_{a} = \frac{[H^{+}]^{2}}{HX}$ [H ⁺] = $\sqrt{6.10 \times 10^{-5} \times 0.255}$ = 3.94 × 10 ⁻³ pH = 2.40	3	If your K_a expression is wrong you can score a max of 1 in this part ii) for correct calculation of pH from your [H ⁺]. If you write $$ but forget to take the square root this gives pH = 4.81 which can get a maximum of two marks in this part ii).
d) i)	$[H^+] = 1.66 \times 10^{-4}$ $K_a = [H^+][NaY]/[HY]$ $K_a = 7.22 \times 10^{-5}$ $pK_a = 4.14$	4	If you use the wrong method you can get no further marks in d i) .
ii)	effect = none or negligible or a very small decrease	/ 1	You cannot just say 'pH goes down' – it must be a very small decrease.
	Salt or Y^- reacts with extra H^+ .	1	Any one of these three answers is allowed for the first explanation mark
	Equilibrium HY ≓ H⁺ + Y⁻ shifts to LHS.	0	here.
	H^+ is removed as equilibrium shifts to LHS.		
	$[H^+]$ or ratio $\frac{[HY]}{[Y^-]}$ or ratio $\frac{[Y^-]}{[HY]}$	1	This mark can only be scored if the first explanation mark is correct

remains almost constant.

explanation mark is correct.

A2 AQA Chemistry Answers to examination-style questions

Answers		Examiner's tips		
6 a) i)	$H_{3}C - Si - CH_{3}$	1	Si(CH ₃) ₄ is allowed.	
ii)	inert /non toxic/volatile/low boiling point/single intense peak/signal upfield of others/protons/very shield	2 led	Do not allow 'cheap'.	
b) 2		1	The molecule is symmetrical.	
c) i)	a = quartet or 4 b = triplet or 3	1		
ii)	$3230-3550 \text{ cm}^{-1}$	1	Use Table 1 in the data section.	
d) i)	butane-1,4-diol	1		
ii)	condensation $-O - (CH_2)_4 - C - (CH_2)_3 - C$ \parallel O O	3	The ester group and the $(CH_2)_3$ are worth one mark each. You must have both carbon chains and ester group to gain any marks.	
e) i)	6H present	1	Accept $2 \times CH_3$ groups.	
ii)	ROCH ₃	1		
iii)	CH ₃ CH ₂ —	1		
iv)	$H_{3}C - C - OCH_{3}$	1		

AQAChemistry

Unit 4

Answers to examination-style questions

Answers

Marks Examiner's tips

7 a) see tables below.

a i)	You could have any of the following reagents	Na ₂ CO ₃ / NaHCO ₃	UI litmus	PCl ₅ PCl ₃ SOCl ₂	Suitable metal	$K_2Cr_2O_7/H^+$	KMnO ₄ /H ⁺
	Р	no reaction	no reaction	no reaction	no reaction	turns green	colourless or brown
	Q	effervescence or CO ₂ or dissolves	red	fumes	effervescence or H_2 or dissolves	no reaction stays orange	no reaction stays purple

6

ii)	You could have any of the following reagents	H ₂ O	AgNO ₃	Na ₂ CO ₃ / NaHCO ₃ both should be aqueous	Named alcohol	Named amine or ammonia	UI litmus
	R	misty fumes	white ppt	effervescence	smell or fumes	fumes	red
	S	no reaction	no ppt	no reaction	no reaction	no reaction	no reaction

2

b) i) One of any of the following reducing 1 agents
 Sn or Fe/HCl
 Sn or Fe/H₂SO₄
 H₂/Ni

nucleophilic substitution

 $N(CH_3)_2$

HCl can be dilute or concentrated.
H₂SO₄ is dilute.
You could also have NaBH₄, LiAlH₄ or Na/C₂H₅OH.

You can have 3H₂ instead of 6[H]. The organic species gives one mark and the balanced equation gives one mark.

You do not need to show Br.