A2 AQA Chemistry Answers to examination-style questions

A	nsv	vers	Marks	Examiner's tips	
1	a)	$\Delta G = \Delta H - T \Delta S$	1		
	b)	Boiling is a spontaneous change at boiling point.	g 1	Accept: $\Delta H = T \Delta S$	
	c)	When $\Delta G = 0$, $\Delta S = \frac{\Delta H}{T}$ = 23.4 × $\frac{1000}{240}$ = 97.5 LK ⁻¹ mol ⁻¹	2	You were told in part b) that $\Delta G = 0$.	
	d)	H bonding in both. H bonding is stronger in HF, because H—F is more polar than H—N, since F is more electronegative than N.	3	Accept 'more energy is needed to overcome the intermolecular forces'.	
2	a)	$\frac{1}{2}\operatorname{N}_2(g) + \frac{3}{2}\operatorname{H}_2(g) \to \operatorname{NH}_3(g)$	1	Since you are making 1 mole of ammonia this is the only equation. You cannot have multiples here.	
	b)	$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$	3		
		$= 193 - \left(\frac{192}{2} + \frac{3}{2} \times 131\right)$			
		$= -99.5 \text{ J K}^{-1} \text{ mol}^{-1}$		Accept +99.5 but only award one mark.	
	c)	i) $\Delta G = \Delta H - T\Delta S$ = -46.2 - $\left(\frac{700 \times -99.5}{1000}\right)$ = + 23.45 kJ mol ⁻¹	3	You could use the entropy change value suggested in the question $(-125 \text{ J K}^{-1} \text{ mol}^{-1})$ and this would give $+41.3 \text{ kJ mol}^{-1}$ as the answer.	
		n) It would decrease.			
	d)	to speed up the reaction	1	This also supplies the activation energy.	
3	a)	 i) W: Pt X: KCl, KNO₃ Y: Mg Z: MgCl₂(aq), MgSO₄(aq), and Mg(NO₃)₂(aq) 	6	X and W are examples of metal salts, other possible Mg and K salts can be given.	
		ii) $Pt H_2(g) H^+(aq) Mg^{2+}(aq) Mg$		In this cell diagram, one mark is for all the species being correct and the other mark is for the correct order.	

A2 AQA Chemistry

Unit 5

Answers to examination-style questions

Answers		vers	; ;	Marks	Examiner's tips
	b)	i)	+0.84 V	6	Remember: $E = E_{\text{right}} - E_{\text{left}}$
		ii)	+3		
		iii)	$2MnO_2 + 2H_2O + Zn$ $\rightarrow 2MnO(OH) + 2OH^- + Zn^{2+}$		
		iv)	oxidising agent: MnO ₂ reducing agent: Zn		
		v)	Zn is used up.		
	c)	i)	$4H^{+} + SO_{4}^{2-} + 2e^{-} \rightarrow SO_{2} + 2H_{2}O$ $2Br^{-} \rightarrow Br_{2} + 2e^{-}$ $4H^{+} + SO_{4}^{2-} + 2Br^{-}$ $\rightarrow SO_{2} + 2H_{2}O + Br_{2}$	5	Accept: $2H_2SO_4 + 2KBr \rightarrow K_2SO_4 + SO_2 + 2H_2O + Br_2$ if you include the spectator ions and join the sulfuric acid ions together. Accept: $H_2SO_4 + 2KCl \rightarrow K_2SO_4 + 2HCl$
		ii)	H_2SO_4 cannot oxidise Cl [−] . $H_2SO_4 + KCl \rightarrow KHSO_4 + HCl$		Accept: Cl_2 is a stronger oxidising agent than H_2SO_4 .
4	a)	The	order is 1.	2	gradient = rate
		When the concentration of iodine is double the gradient doubles.		le	
	b)	Cur curv	ve X starts at the origin and is below ve B .	2	A lower temperature means a slower reaction, but still makes the same amount of product.
		Cur curv	ve X finishes at the same level as ze B .		a ta ti f taata
	c)	Cur thar	ve Y starts at the origin and is steeper in curve A .	2	A catalyst speeds up the reaction but still makes the same amount of product.
		Cur curv	ve Y finishes at the same level as ve A.		

A2 AQA Chemistry Answers to examination-style questions

Ansv	vers		Marks	Examiner's tips	
d)	i)	$S_2O_8^{2^-} + 2Fe^{2^+} \rightarrow 2SO_4^{2^-} + 2Fe^{3^+}$ $2Fe^{3^+} + 2I^- \rightarrow 2Fe^{2^+} + I_2$	4	These equations would allow the electrons to cancel out if the overall equation was written. You do not need to have the 2s in the second equation	
	ii)	alternative route		to have the 25 m the second equation.	
		not used up		Accept: 'regenerated' instead of 'not used up'. Another alternative would be that 'it speeds up the reaction'.	
e)	i)	a different phase from the reactants	4		
	ii)	Reactants adsorb weakly onto the surface of silver			
	iii)	The reaction may be too fast, leading to an explosion			
5 a)	ΔH ^e so Δ	$P_{sol} = \Delta H^{e}_{lattice} + \sum \Delta H^{e}_{hyd}$ $\Delta H^{e}_{lattice} = \Delta H^{e}_{sol} - \sum \Delta H^{e}_{hyd}$	3		
	ΔH^{c}	$P_{lattice}(MgCl_2) = -155 + 1920 + 728$ = +2493 kJ mol ⁻¹			
	ΔH^{ϵ}	$\hat{P}_{lattice}(NaCl) = +3.9 + 406 + 364$ = +773.9 kJ mol ⁻¹			
b)	Attr The Mg ²	action between ions is weaker. charge on Na ⁺ is only half that on $^{2+}$.	2		
c)	Al ³⁺ can	ions have higher charge/size ratio so attract water molecules more strongly	2 7.	There are stronger ion–dipole forces between the aluminium ion and the water molecules.	
d)	$K_{\rm a} = \frac{[\rm H^+][\rm A^-]}{[\rm HA]}$		4	$[\mathrm{H}^+]=[\mathrm{A}^-]$	
	=	$= \frac{[\mathrm{H}^+]^2}{[\mathrm{HA}]}$		or $[\mathrm{H}^+] = \sqrt{K_{\mathrm{a}}[\mathrm{HA}]}$	
	=	$= \sqrt{1.26 \times 10^{-5} \times 2.0}$ = 5.01 × 10 ⁻³			
	pН	= 2.30		The correct answer of 2.30 would gain the four marks.	

pH value must be given to two decimal places.

A A Chemistry Answers to examination-style questions

A	nsv	vers	Marks	Examiner's tips	
	e)	$SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$ pH = 0	2	Since the products are so acidic, the pH range allowed is -1 to 1.	
6	a)	$Mg^{2+}(g) + 2e^{-} + 2Cl(g)$	4		
		$Mg^{2+}(g) + 2e^{-} + Cl_2(g)$			
		$Mg^+(g) + e^- + Cl_2(g)$			
		$Mg(g) + Cl_2(g)$			
	b)	2nd IE + 642 + 150 + 736 + (2 × 121) = (2 × 364) + 2493	3	One mark is for the factors of $2\times$.	
		$IE = +1451 \text{ kJ mol}^{-1}$			
	c)	$\Delta H = -\Delta H^{\circ}_{\text{lattice formation}} + \Sigma \Delta H^{\circ}_{\text{hydration}}$ $= 2493 - 1920 - (2 \times 364)$ $= -155 \text{ kJ mol}^{-1}$	3	Accept: a cycle with state symbols or labels instead. If you get the sign of the answer wrong you can score a maximum of one mark.	
	d)	i) increase in disorder on dissolving	2	Accept: ΔS positive, ΔG negative, $T\Delta S > \Delta H$	
		ii) moles of NH ₄ Cl = $\frac{2}{53.5} = 0.0374$	5		
		heat absorbed = $15 \times 0.0374 = 0.56$ $Q = mc\Delta T$	1		
		$\Delta T = \frac{Q}{mc} = (0.561 \times 1000)/(50 \times 4.2) = 2.6 ^{\circ}\text{C}$	0	Answers in a range of 2.5 to 2.7 are allowed, since you may have rounded your calculations on the top and bottom line. You must put temperature change to at least 1 dn	
		Final temperature = $20 - 2.6$ = $17.4 ^{\circ}\text{C}$		to at least 1 dp.	
7	a)	the ability of an atom or element to attract electrons or electron density from a covalent bond	ct 2	Do not put 'electron', i.e. singular, in the first line.	
	b)	It increases.	3	If the trend is wrong you get no marks.	
		more protons		Accept: greater nuclear charge and electrons are in the same shell or they	
		similar or same shielding		have a similar radius or a smaller radius	

A A Chemistry Answers to examination-style questions

Answers			Marks	Examiner's tips
c)	i)	MgO is ionic P ₄ O ₁₀ is covalent	3	If you mention molecules you score 0.
	ii)	The electronegativity difference is small.		Accept: the electronegativities are similar, but you cannot say they are the same.
d)	Na	$_{2}O + H_{2}O \rightarrow 2Na^{+} + 2OH^{-}$	2	
	SO	$_2 + H_2O \rightarrow H_2SO_3$		
e)	Mg	$O + 2HCl \rightarrow MgCl_2 + H_2O$	1	Accept: the ionic equation MgO + $2H^+ \rightarrow Mg^{2+} + H_2O$
f)	P ₄ C	$D_{10} + 12 \text{NaOH} \rightarrow 4 \text{Na}_3 \text{PO}_4 + 6 \text{H}_2 \text{O}_4$	1	Accept: the ionic equation $P_4O_{10} + 12OH^- \rightarrow 4PO_4^{3-} + 6H_2O$
8 a)	i)	$SO_2 + V_2O_5 \rightarrow SO_3 + V_2O_4$	3	
		$V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$		
		V(IV) or +4 and V(V) or +5		Must have both oxidation states.
	ii)	$MnO_4^- + 8H^+ + 4Mn^{2+}$ $\rightarrow 5Mn^{3+} + 4H_2O$	3	
		$2Mn^{3+} + C_2O_4^{2-} \rightarrow 2Mn^{2+} + 2CO_2$		
		Mn(III) or +3 and Mn(II) or +2		Must have both oxidation states.
b)	[Co	$(\mathrm{NH}_3)_6]^{2+}$ (formed)	3	
	con	nplex easier to oxidise		
	H_2	D_2		Accept: air or oxygen
c)	mo = 0	les of dichromate = $\left(\frac{29.2}{1000}\right) \times 0.04$.001 168	6	You may have rounded to 0.001 17, which is OK since there are three significant figures.

A2 AQA Chemistry Answers to examination-style questions

Answers			Marks	Examiner's tips	
	mo	les of $\mathbf{Q}^{2+} = \left(\frac{25}{1000}\right) \times 0.140 = 0.003$	50		
	Eac or h	th mole of dichromate needs 6 electrates and fequation with 6e ⁻ .	ons		
	mo = 0	les of electrons = 6×0.001168 .007 008		moles $\mathbf{Q}^{2+:}$ moles dichromate = 3 : 1	
	mo	les of electrons per mole of Q $\frac{0.007008}{0.0035} = 2.002 = 2$			
	Q h	as an oxidation state of 4.		Accept: \mathbf{Q}^{4+}	
9 a)	CH two spli	₃ CH ₂ Cl peaks integration ratio 3 : 2 t into triplet and quartet	6	If two peaks not stated then no marks for CH_3CH_2Cl .	
	CH two spli	³ CHCl ₂ peaks integration ratio 3 : 1 t into doublet and quartet		If two peaks not stated then no marks for CH_3CHCl_2 .	
b)	i)	$Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$	9	Accept: $Cl_2 + 2I^- \rightarrow 2Cl^- + I_2$ since only one correct equation is required.	
		KBr orange-brown solution		You must state that it is a solution. Just the colour is insufficient.	
		KI brown solution or black solid		Any mention of purple loses the mark since iodine is only purple as a vapour.	
	ii)	$\operatorname{Ba}^{2+} + \operatorname{SO}_4^{2-} \to \operatorname{BaSO}_4$			
		BaCl ₂ : white precipitate		Accept equation, i.e. $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$	
		MgCl ₂ : no precipitate or no change	2	Do not accept: 'nothing' or 'no observation'.	
	iii)	CoCl ₂ solution goes blue.			
		CuCl ₂ solution goes green.		Accept: yellow or yellow green	
		$[Co(H_2O)_6]^{2+} + 4Cl^- \rightarrow CoCl_4^{2-} + 6H_2O$		Accept: $[Cu(H_2O)_6]^{2+} + 4Cl^-$ $\rightarrow CuCl_4^{2-} + 6H_2O$	